論文の概要: Dink-Net: Neural Clustering on Large Graphs
- arxiv url: http://arxiv.org/abs/2305.18405v3
- Date: Fri, 14 Jul 2023 16:00:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-17 16:38:31.875249
- Title: Dink-Net: Neural Clustering on Large Graphs
- Title(参考訳): Dink-Net: 大きなグラフ上のニューラルクラスタリング
- Authors: Yue Liu, Ke Liang, Jun Xia, Sihang Zhou, Xihong Yang, Xinwang Liu,
Stan Z. Li
- Abstract要約: ディープグラフクラスタリング法 (Dink-Net) は, 拡張と縮小という概念を用いて提案される。
ノードを識別することにより、拡張によって劣化しても、表現は自己教師された方法で学習される。
クラスタリング分布は、提案したクラスタ拡張損失とクラスタ縮小損失を最小化することにより最適化される。
ランナアップと比較して、Dink-Net 9.62%は1100万ノードと16億エッジを持つogbn-papers100MデータセットでNMIの改善を実現している。
- 参考スコア(独自算出の注目度): 59.10189693120368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep graph clustering, which aims to group the nodes of a graph into disjoint
clusters with deep neural networks, has achieved promising progress in recent
years. However, the existing methods fail to scale to the large graph with
million nodes. To solve this problem, a scalable deep graph clustering method
(Dink-Net) is proposed with the idea of dilation and shrink. Firstly, by
discriminating nodes, whether being corrupted by augmentations, representations
are learned in a self-supervised manner. Meanwhile, the cluster centres are
initialized as learnable neural parameters. Subsequently, the clustering
distribution is optimized by minimizing the proposed cluster dilation loss and
cluster shrink loss in an adversarial manner. By these settings, we unify the
two-step clustering, i.e., representation learning and clustering optimization,
into an end-to-end framework, guiding the network to learn clustering-friendly
features. Besides, Dink-Net scales well to large graphs since the designed loss
functions adopt the mini-batch data to optimize the clustering distribution
even without performance drops. Both experimental results and theoretical
analyses demonstrate the superiority of our method. Compared to the runner-up,
Dink-Net achieves 9.62% NMI improvement on the ogbn-papers100M dataset with 111
million nodes and 1.6 billion edges. The source code is released at
https://github.com/yueliu1999/Dink-Net. Besides, a collection (papers, codes,
and datasets) of deep graph clustering is shared at
https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering.
- Abstract(参考訳): ディープグラフクラスタリング(ディープグラフクラスタリング)は、グラフのノードをディープニューラルネットワークで結合しないクラスタにグループ化することを目的としている。
しかし、既存の方法は百万のノードを持つ大きなグラフにスケールできない。
この問題を解決するために,拡張と縮小という概念を用いてスケーラブルなディープグラフクラスタリング手法(Dink-Net)を提案する。
まず、ノードを識別することにより、拡張によって劣化しても、自己教師された方法で表現が学習される。
一方、クラスタセンターは学習可能なニューラルネットワークパラメータとして初期化される。
次に、提案するクラスタ拡張損失とクラスタ縮小損失を逆方向に最小化することにより、クラスタリング分布を最適化する。
これらの設定により、2段階のクラスタリング、すなわち表現学習とクラスタリング最適化をエンドツーエンドフレームワークに統合し、ネットワークにクラスタリングに優しい機能を学習させる。
さらに、dink-netは、設計された損失関数がミニバッチデータを採用して、パフォーマンス低下なしにもクラスタリング分布を最適化するため、大きなグラフによくスケールする。
実験結果と理論的解析はともに本手法の優越性を示している。
ランナアップと比較して、Dink-Netは1億1100万ノードと16億エッジを持つogbn-papers100Mデータセットで9.62%のNMI改善を達成した。
ソースコードはhttps://github.com/yueliu 1999/Dink-Netで公開されている。
さらに、ディープグラフクラスタリングのコレクション(ペーパー、コード、データセット)はhttps://github.com/yueliu 1999/Awesome-Deep-Graph-Clusteringで共有されている。
関連論文リスト
- Cluster-based Graph Collaborative Filtering [55.929052969825825]
グラフ畳み込みネットワーク(GCN)は、レコメンデーションシステムのためのユーザおよびアイテム表現の学習に成功している。
既存のGCNベースのほとんどのメソッドは、高階グラフ畳み込みを実行しながら、ユーザの複数の関心事を見落としている。
クラスタベースグラフ協調フィルタリング(ClusterGCF)と呼ばれる新しいGCNベースのレコメンデーションモデルを提案する。
論文 参考訳(メタデータ) (2024-04-16T07:05:16Z) - Learning Uniform Clusters on Hypersphere for Deep Graph-level Clustering [25.350054742471816]
我々はUDGC(Uniform Deep Graph Clustering)と呼ばれる新しいディープグラフレベルのクラスタリング手法を提案する。
UDGCはインスタンスを異なるクラスタに均等に割り当て、次にこれらのクラスタをユニットハイパースフィア上に分散させ、より均一なクラスタレベルの分散と、より小さなクラスタ崩壊につながる。
8つのよく知られたデータセットに関する実証研究は、UDGCが最先端のモデルを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2023-11-23T12:08:20Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
埋め込みによるグラフリファインメントクラスタリングネットワーク (EGRC-Net) という新しいグラフクラスタリングネットワークを提案する。
EGRC-Netは学習した埋め込みを利用して初期グラフを適応的に洗練し、クラスタリング性能を向上させる。
提案手法はいくつかの最先端手法より一貫して優れている。
論文 参考訳(メタデータ) (2022-11-19T09:08:43Z) - Total Variation Graph Neural Networks [5.571369922847262]
最近提案されたグラフニューラルネットワーク(GNN)は、教師なしの最小カット目標を用いて訓練されている。
本稿では,最小カットの厳密な緩和を最適化し,クラスタ割り当てを計算するGNNモデルを提案する。
論文 参考訳(メタデータ) (2022-11-11T14:13:14Z) - Scalable Deep Graph Clustering with Random-walk based Self-supervised
Learning [0.0]
スケーラブルなディープクラスタリングアルゴリズムであるRwSLは、100万以上のノードを持つグラフを超えてスケールし続けることができることを示す。
また、RwSLが1つのGPUのみを使用して、1.8億のエッジを持つグラフ上でノードクラスタリングを実行する方法を実証した。
論文 参考訳(メタデータ) (2021-12-31T16:12:23Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
我々は,自己教師型コントラストグラフクラスタリング(SCAGC)という,新たな属性グラフクラスタリングネットワークを提案する。
SCAGCでは,不正確なクラスタリングラベルを活用することで,ノード表現学習のための自己教師付きコントラスト損失を設計する。
OOSノードでは、SCAGCはクラスタリングラベルを直接計算できる。
論文 参考訳(メタデータ) (2021-10-15T03:25:28Z) - Learning Hierarchical Graph Neural Networks for Image Clustering [81.5841862489509]
本稿では,画像の集合を未知の個数にクラスタリングする方法を学ぶ階層型グラフニューラルネットワーク(GNN)モデルを提案する。
我々の階層的なGNNは、階層の各レベルで予測される連結コンポーネントをマージして、次のレベルで新しいグラフを形成するために、新しいアプローチを用いています。
論文 参考訳(メタデータ) (2021-07-03T01:28:42Z) - Interpretable Clustering on Dynamic Graphs with Recurrent Graph Neural
Networks [24.017988997693262]
ノードとノードのクラスタメンバーシップ間の接続が時間とともに変化する可能性がある動的グラフにおけるノードのクラスタリングの問題を検討する。
まず,ノード間の重み付き接続に基づいてノードをクラスタ化し,その重みが時間とともに一定速度で減少する,簡易な崩壊ベースのクラスタリングアルゴリズムを提案する。
本稿では,各クラスタの最適減衰率を特徴付け,真のクラスタのほぼ完全回復を実現するクラスタリング手法を提案する。
論文 参考訳(メタデータ) (2020-12-16T04:31:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。