Beyond the Meta: Leveraging Game Design Parameters for Patch-Agnostic
Esport Analytics
- URL: http://arxiv.org/abs/2305.18477v3
- Date: Wed, 16 Aug 2023 09:23:37 GMT
- Title: Beyond the Meta: Leveraging Game Design Parameters for Patch-Agnostic
Esport Analytics
- Authors: Alan Pedrassoli Chitayat, Florian Block, James Walker, Anders Drachen
- Abstract summary: Esport games comprise a sizeable fraction of the global games market, and is the fastest growing segment in games.
Compared to traditional sports, esport titles change rapidly, in terms of mechanics as well as rules.
This paper extracts information from game design (i.e. patch notes) and uses clustering techniques to propose a new form of character representation.
- Score: 4.1692797498685685
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Esport games comprise a sizeable fraction of the global games market, and is
the fastest growing segment in games. This has given rise to the domain of
esports analytics, which uses telemetry data from games to inform players,
coaches, broadcasters and other stakeholders. Compared to traditional sports,
esport titles change rapidly, in terms of mechanics as well as rules. Due to
these frequent changes to the parameters of the game, esport analytics models
can have a short life-spam, a problem which is largely ignored within the
literature. This paper extracts information from game design (i.e. patch notes)
and utilises clustering techniques to propose a new form of character
representation. As a case study, a neural network model is trained to predict
the number of kills in a Dota 2 match utilising this novel character
representation technique. The performance of this model is then evaluated
against two distinct baselines, including conventional techniques. Not only did
the model significantly outperform the baselines in terms of accuracy (85%
AUC), but the model also maintains the accuracy in two newer iterations of the
game that introduced one new character and a brand new character type. These
changes introduced to the design of the game would typically break conventional
techniques that are commonly used within the literature. Therefore, the
proposed methodology for representing characters can increase the life-spam of
machine learning models as well as contribute to a higher performance when
compared to traditional techniques typically employed within the literature.
Related papers
- RisingBALLER: A player is a token, a match is a sentence, A path towards a foundational model for football players data analytics [0.0]
I introduce RisingBALLER, the first publicly available approach that leverages a transformer model trained on football match data to learn match-specific player representations.
More than a simple machine learning model, RisingBALLER is a comprehensive framework designed to transform football data analytics by learning high-level foundational features for players.
arXiv Detail & Related papers (2024-10-01T14:39:22Z) - Predicting Outcomes in Video Games with Long Short Term Memory Networks [0.39723189359605243]
Our work attempts to enhance audience engagement within video game tournaments by introducing a real-time method of predicting wins.
As a proof of concept, we evaluate our model's performance within a classic, two-player arcade game, Super Street Fighter II Turbo.
arXiv Detail & Related papers (2024-02-24T22:36:23Z) - ShuttleSHAP: A Turn-Based Feature Attribution Approach for Analyzing
Forecasting Models in Badminton [52.21869064818728]
Deep learning approaches for player tactic forecasting in badminton show promising performance partially attributed to effective reasoning about rally-player interactions.
We propose a turn-based feature attribution approach, ShuttleSHAP, for analyzing forecasting models in badminton based on variants of Shapley values.
arXiv Detail & Related papers (2023-12-18T05:37:51Z) - Leveraging Cluster Analysis to Understand Educational Game Player
Experiences and Support Design [3.07869141026886]
The ability for an educational game designer to understand their audience's play styles is an essential tool for improving their game's design.
We present a simple, reusable process using best practices for data clustering, feasible for use within a small educational game studio.
arXiv Detail & Related papers (2022-10-18T14:51:15Z) - Graph Neural Networks to Predict Sports Outcomes [0.0]
We introduce a sport-agnostic graph-based representation of game states.
We then use our proposed graph representation as input to graph neural networks to predict sports outcomes.
arXiv Detail & Related papers (2022-07-28T14:45:02Z) - GCN-WP -- Semi-Supervised Graph Convolutional Networks for Win
Prediction in Esports [84.55775845090542]
We propose a semi-supervised win prediction model for esports based on graph convolutional networks.
GCN-WP integrates over 30 features about the match and players and employs graph convolution to classify games based on their neighborhood.
Our model achieves state-of-the-art prediction accuracy when compared to machine learning or skill rating models for LoL.
arXiv Detail & Related papers (2022-07-26T21:38:07Z) - Explainable expected goal models for performance analysis in football
analytics [5.802346990263708]
This paper proposes an accurate expected goal model trained consisting of 315,430 shots from seven seasons between 2014-15 and 2020-21 of the top-five European football leagues.
To best of our knowledge, this is the first paper that demonstrates a practical application of an explainable artificial intelligence tool aggregated profiles.
arXiv Detail & Related papers (2022-06-14T23:56:03Z) - L2E: Learning to Exploit Your Opponent [66.66334543946672]
We propose a novel Learning to Exploit framework for implicit opponent modeling.
L2E acquires the ability to exploit opponents by a few interactions with different opponents during training.
We propose a novel opponent strategy generation algorithm that produces effective opponents for training automatically.
arXiv Detail & Related papers (2021-02-18T14:27:59Z) - Deep Policy Networks for NPC Behaviors that Adapt to Changing Design
Parameters in Roguelike Games [137.86426963572214]
Turn-based strategy games like Roguelikes, for example, present unique challenges to Deep Reinforcement Learning (DRL)
We propose two network architectures to better handle complex categorical state spaces and to mitigate the need for retraining forced by design decisions.
arXiv Detail & Related papers (2020-12-07T08:47:25Z) - Game Plan: What AI can do for Football, and What Football can do for AI [83.79507996785838]
Predictive and prescriptive football analytics require new developments and progress at the intersection of statistical learning, game theory, and computer vision.
We illustrate that football analytics is a game changer of tremendous value, in terms of not only changing the game of football itself, but also in terms of what this domain can mean for the field of AI.
arXiv Detail & Related papers (2020-11-18T10:26:02Z) - Imagining Grounded Conceptual Representations from Perceptual
Information in Situated Guessing Games [83.53942719040576]
In visual guessing games, a Guesser has to identify a target object in a scene by asking questions to an Oracle.
Existing models fail to learn truly multi-modal representations, relying instead on gold category labels for objects in the scene both at training and inference time.
We introduce a novel "imagination" module based on Regularized Auto-Encoders, that learns context-aware and category-aware latent embeddings without relying on category labels at inference time.
arXiv Detail & Related papers (2020-11-05T15:42:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.