Provable Reward-Agnostic Preference-Based Reinforcement Learning
- URL: http://arxiv.org/abs/2305.18505v3
- Date: Wed, 17 Apr 2024 16:13:54 GMT
- Title: Provable Reward-Agnostic Preference-Based Reinforcement Learning
- Authors: Wenhao Zhan, Masatoshi Uehara, Wen Sun, Jason D. Lee,
- Abstract summary: Preference-based Reinforcement Learning (PbRL) is a paradigm in which an RL agent learns to optimize a task using pair-wise preference-based feedback over trajectories.
We propose a theoretical reward-agnostic PbRL framework where exploratory trajectories that enable accurate learning of hidden reward functions are acquired.
- Score: 61.39541986848391
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Preference-based Reinforcement Learning (PbRL) is a paradigm in which an RL agent learns to optimize a task using pair-wise preference-based feedback over trajectories, rather than explicit reward signals. While PbRL has demonstrated practical success in fine-tuning language models, existing theoretical work focuses on regret minimization and fails to capture most of the practical frameworks. In this study, we fill in such a gap between theoretical PbRL and practical algorithms by proposing a theoretical reward-agnostic PbRL framework where exploratory trajectories that enable accurate learning of hidden reward functions are acquired before collecting any human feedback. Theoretical analysis demonstrates that our algorithm requires less human feedback for learning the optimal policy under preference-based models with linear parameterization and unknown transitions, compared to the existing theoretical literature. Specifically, our framework can incorporate linear and low-rank MDPs with efficient sample complexity. Additionally, we investigate reward-agnostic RL with action-based comparison feedback and introduce an efficient querying algorithm tailored to this scenario.
Related papers
- UDQL: Bridging The Gap between MSE Loss and The Optimal Value Function in Offline Reinforcement Learning [10.593924216046977]
We first theoretically analyze overestimation phenomenon led by MSE and provide the theoretical upper bound of the overestimated error.
At last, we propose the offline RL algorithm based on underestimated operator and diffusion policy model.
arXiv Detail & Related papers (2024-06-05T14:37:42Z) - A Unified Linear Programming Framework for Offline Reward Learning from Human Demonstrations and Feedback [6.578074497549894]
Inverse Reinforcement Learning (IRL) and Reinforcement Learning from Human Feedback (RLHF) are pivotal methodologies in reward learning.
This paper introduces a novel linear programming (LP) framework tailored for offline reward learning.
arXiv Detail & Related papers (2024-05-20T23:59:26Z) - REBEL: Reinforcement Learning via Regressing Relative Rewards [59.68420022466047]
We propose REBEL, a minimalist RL algorithm for the era of generative models.
In theory, we prove that fundamental RL algorithms like Natural Policy Gradient can be seen as variants of REBEL.
We find that REBEL provides a unified approach to language modeling and image generation with stronger or similar performance as PPO and DPO.
arXiv Detail & Related papers (2024-04-25T17:20:45Z) - Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint [56.74058752955209]
This paper studies the alignment process of generative models with Reinforcement Learning from Human Feedback (RLHF)
We first identify the primary challenges of existing popular methods like offline PPO and offline DPO as lacking in strategical exploration of the environment.
We propose efficient algorithms with finite-sample theoretical guarantees.
arXiv Detail & Related papers (2023-12-18T18:58:42Z) - Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning [73.80728148866906]
Quasimetric Reinforcement Learning (QRL) is a new RL method that utilizes quasimetric models to learn optimal value functions.
On offline and online goal-reaching benchmarks, QRL also demonstrates improved sample efficiency and performance.
arXiv Detail & Related papers (2023-04-03T17:59:58Z) - A General Framework for Sample-Efficient Function Approximation in
Reinforcement Learning [132.45959478064736]
We propose a general framework that unifies model-based and model-free reinforcement learning.
We propose a novel estimation function with decomposable structural properties for optimization-based exploration.
Under our framework, a new sample-efficient algorithm namely OPtimization-based ExploRation with Approximation (OPERA) is proposed.
arXiv Detail & Related papers (2022-09-30T17:59:16Z) - B-Pref: Benchmarking Preference-Based Reinforcement Learning [84.41494283081326]
We introduce B-Pref, a benchmark specially designed for preference-based RL.
A key challenge with such a benchmark is providing the ability to evaluate candidate algorithms quickly.
B-Pref alleviates this by simulating teachers with a wide array of irrationalities.
arXiv Detail & Related papers (2021-11-04T17:32:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.