Robust Reinforcement Learning from Human Feedback for Large Language Models Fine-Tuning
- URL: http://arxiv.org/abs/2504.03784v3
- Date: Tue, 15 Apr 2025 09:29:06 GMT
- Title: Robust Reinforcement Learning from Human Feedback for Large Language Models Fine-Tuning
- Authors: Kai Ye, Hongyi Zhou, Jin Zhu, Francesco Quinzan, Chengchung Shi,
- Abstract summary: Reinforcement learning from human feedback (RLHF) has emerged as a key technique for aligning the output of large language models with human preferences.<n>Most existing RLHF algorithms use the Bradley-Terry model, which relies on assumptions about human preferences that may not reflect the complexity and variability of real-world judgments.<n>We propose a robust algorithm to enhance the performance of existing approaches under such reward model misspecifications.
- Score: 3.30671592417223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning from human feedback (RLHF) has emerged as a key technique for aligning the output of large language models (LLMs) with human preferences. To learn the reward function, most existing RLHF algorithms use the Bradley-Terry model, which relies on assumptions about human preferences that may not reflect the complexity and variability of real-world judgments. In this paper, we propose a robust algorithm to enhance the performance of existing approaches under such reward model misspecifications. Theoretically, our algorithm reduces the variance of reward and policy estimators, leading to improved regret bounds. Empirical evaluations on LLM benchmark datasets demonstrate that the proposed algorithm consistently outperforms existing methods, with 77-81% of responses being favored over baselines on the Anthropic Helpful and Harmless dataset.
Related papers
- Distributionally Robust Reinforcement Learning with Human Feedback [13.509499718691016]
We introduce a distributionally robust RLHF for fine-tuning large language models.<n>Our goal is to ensure that a fine-tuned model retains its performance even when the distribution of prompts significantly differs.<n>We show that our robust training improves the accuracy of the learned reward models on average, and markedly on some tasks, such as reasoning.
arXiv Detail & Related papers (2025-03-01T15:43:39Z) - PILAF: Optimal Human Preference Sampling for Reward Modeling [14.336058926701432]
We propose Policy-Interpolated Learning for Aligned Feedback (PILAF), a novel response sampling strategy for preference labeling.<n>PILAF explicitly aligns preference learning with maximizing the underlying oracle reward.
arXiv Detail & Related papers (2025-02-06T18:09:00Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Zeroth-Order Policy Gradient for Reinforcement Learning from Human Feedback without Reward Inference [15.038210624870656]
Reward inference is a critical intermediate step in the Reinforcement Learning from Human Feedback pipeline.
This paper develops two RLHF algorithms without reward inference for general RL problems beyond bandits and deterministic MDP bandit, and general preference models beyond the Bradley-Terry model.
arXiv Detail & Related papers (2024-09-25T22:20:11Z) - Learning Reward and Policy Jointly from Demonstration and Preference Improves Alignment [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.<n>The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.<n>We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - MaxMin-RLHF: Alignment with Diverse Human Preferences [101.57443597426374]
Reinforcement Learning from Human Feedback (RLHF) aligns language models to human preferences by employing a singular reward model derived from preference data.
We learn a mixture of preference distributions via an expectation-maximization algorithm to better represent diverse human preferences.
Our algorithm achieves an average improvement of more than 16% in win-rates over conventional RLHF algorithms.
arXiv Detail & Related papers (2024-02-14T03:56:27Z) - Improving Reinforcement Learning from Human Feedback with Efficient Reward Model Ensemble [67.4269821365504]
Reinforcement Learning from Human Feedback (RLHF) is a widely adopted approach for aligning large language models with human values.
However, RLHF relies on a reward model that is trained with a limited amount of human preference data.
We contribute a reward ensemble method that allows the reward model to make more accurate predictions.
arXiv Detail & Related papers (2024-01-30T00:17:37Z) - Contrastive Preference Learning: Learning from Human Feedback without RL [71.77024922527642]
We introduce Contrastive Preference Learning (CPL), an algorithm for learning optimal policies from preferences without learning reward functions.
CPL is fully off-policy, uses only a simple contrastive objective, and can be applied to arbitrary MDPs.
arXiv Detail & Related papers (2023-10-20T16:37:56Z) - Sample Complexity of Preference-Based Nonparametric Off-Policy
Evaluation with Deep Networks [58.469818546042696]
We study the sample efficiency of OPE with human preference and establish a statistical guarantee for it.
By appropriately selecting the size of a ReLU network, we show that one can leverage any low-dimensional manifold structure in the Markov decision process.
arXiv Detail & Related papers (2023-10-16T16:27:06Z) - Provable Reward-Agnostic Preference-Based Reinforcement Learning [61.39541986848391]
Preference-based Reinforcement Learning (PbRL) is a paradigm in which an RL agent learns to optimize a task using pair-wise preference-based feedback over trajectories.
We propose a theoretical reward-agnostic PbRL framework where exploratory trajectories that enable accurate learning of hidden reward functions are acquired.
arXiv Detail & Related papers (2023-05-29T15:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.