Classical and semi-classical limits in phase space
- URL: http://arxiv.org/abs/2305.18644v3
- Date: Sun, 28 Apr 2024 04:02:16 GMT
- Title: Classical and semi-classical limits in phase space
- Authors: Clay D. Spence,
- Abstract summary: A semimagnitude approximation is derived by using a family of wavepackets to map arbitrary wavefunctions into phase space.
The resulting approximation is a linear first-order partial differential equation on phase space.
This is a derivation of the Koopman-vonclassicalmann (KvN) formulation of classical mechanics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A semiclassical approximation is derived by using a family of wavepackets to map arbitrary wavefunctions into phase space. If the Hamiltonian can be approximated as linear over each individual wavepacket, as often done when presenting Ehrenfest's theorem, the resulting approximation is a linear first-order partial differential equation on phase space, which will be referred to as the Schr\"odinger-Ehrenfest or SE equation. This advectively transports wavefunctions along classical trajectories, so that as a trajectory is followed in time the amplitude remains constant while the phase changes by the action divided by $\hbar$. The wavefunction's squared-magnitude is a plausible phase space density and obeys Liouville's equation for the classical time evolution. This is a derivation of the Koopman-von~Neumann (KvN) formulation of classical mechanics, which previously was postulated but not derived. With the time-independent SE equation, continuity of the wavefunction requires the change of phase around any closed path in the torus covered by a classical trajectory to be an integer multiple of $2\pi$, giving a standing wave picture of old quantum mechanics. While this applies to any system, for separable systems it gives Bohr-Sommerfeld quantization.
Related papers
- Quantum propagator for a general time-dependent quadratic Hamiltonian:
Application to interacting oscillators in external fields [0.0]
We find the quantum propagator for a general time-dependent quadratic Hamiltonian.
The state and excitation propagation along the harmonic chain in the absence and presence of an external classical source is studied and discussed.
arXiv Detail & Related papers (2023-05-30T14:17:04Z) - Double-scale theory [77.34726150561087]
We present a new interpretation of quantum mechanics, called the double-scale theory.
It is based on the simultaneous existence of two wave functions in the laboratory reference frame.
The external wave function corresponds to a field that pilots the center-of-mass of the quantum system.
The internal wave function corresponds to the interpretation proposed by Edwin Schr"odinger.
arXiv Detail & Related papers (2023-05-29T14:28:31Z) - Hybrid quantum-classical dynamics of pure-dephasing systems [0.0]
We consider the interaction dynamics of a classical oscillator and a quantum two-level system for different pure-dephasing Hamiltonians of the type $widehatH(q,p)=H_C(q,p)boldsymbol1+H_I(q,p)widehatsigma_z$.
arXiv Detail & Related papers (2023-03-08T12:22:00Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Path-Integral Treatment of Quantum Bouncers [0.0]
We derive mappings between the one-sided bouncer and symmetric bouncer, which explains why each bounce of the one-sided bouncer increases the Morse index by 2.
We interpret the semiclassical Feynman path integral to obtain visualizations of matter wave propagation based on interference between classical paths.
arXiv Detail & Related papers (2021-09-28T13:24:29Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Universal semiclassical equations based on the quantum metric [0.0]
We derive semiclassical equations of motion for an accelerated wavepacket in a two-band system.
We show that these equations can be formulated in terms of the static band geometry described by the quantum metric.
arXiv Detail & Related papers (2021-06-23T13:24:29Z) - Semi-classical quantisation of magnetic solitons in the anisotropic
Heisenberg quantum chain [21.24186888129542]
We study the structure of semi-classical eigenstates in a weakly-anisotropic quantum Heisenberg spin chain.
Special emphasis is devoted to the simplest types of solutions, describing precessional motion and elliptic magnetisation waves.
arXiv Detail & Related papers (2020-10-14T16:46:11Z) - Quantum dynamics and relaxation in comb turbulent diffusion [91.3755431537592]
Continuous time quantum walks in the form of quantum counterparts of turbulent diffusion in comb geometry are considered.
Operators of the form $hatcal H=hatA+ihatB$ are described.
Rigorous analytical analysis is performed for both wave and Green's functions.
arXiv Detail & Related papers (2020-10-13T15:50:49Z) - Koopman-von Neumann Approach to Quantum Simulation of Nonlinear
Classical Dynamics [0.0]
Quantum computers can be used to simulate nonlinear non-Hamiltonian classical dynamics on phase space.
Koopman-von Neumann formulation implies that the conservation of the probability distribution function on phase space can be recast as an equivalent Schr"odinger equation on Hilbert space.
Quantum simulation of classical dynamics is exponentially more efficient than a deterministic Eulerian discretization of the Liouville equation.
arXiv Detail & Related papers (2020-03-22T19:47:19Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.