論文の概要: Fine-Grained is Too Coarse: A Novel Data-Centric Approach for Efficient
Scene Graph Generation
- arxiv url: http://arxiv.org/abs/2305.18668v2
- Date: Mon, 25 Sep 2023 12:35:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-27 02:31:27.452218
- Title: Fine-Grained is Too Coarse: A Novel Data-Centric Approach for Efficient
Scene Graph Generation
- Title(参考訳): 細粒度が粗い:効率的なシーングラフ生成のための新しいデータ中心アプローチ
- Authors: Neau Ma\"elic, Paulo E. Santos, Anne-Gwenn Bosser and C\'edric Buche
- Abstract要約: 本稿では,関連性の生成を優先するSGG(Efficient Scene Graph Generation)の課題を紹介する。
我々は、人気のあるVisual Genomeデータセットのアノテーションに基づいて、新しいデータセットVG150をキュレートする。
我々は、このデータセットが通常SGGで使用されるものよりも高品質で多様なアノテーションを含んでいることを示す一連の実験を通して示す。
- 参考スコア(独自算出の注目度): 0.7851536646859476
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Learning to compose visual relationships from raw images in the form of scene
graphs is a highly challenging task due to contextual dependencies, but it is
essential in computer vision applications that depend on scene understanding.
However, no current approaches in Scene Graph Generation (SGG) aim at providing
useful graphs for downstream tasks. Instead, the main focus has primarily been
on the task of unbiasing the data distribution for predicting more fine-grained
relations. That being said, all fine-grained relations are not equally relevant
and at least a part of them are of no use for real-world applications. In this
work, we introduce the task of Efficient SGG that prioritizes the generation of
relevant relations, facilitating the use of Scene Graphs in downstream tasks
such as Image Generation. To support further approaches, we present a new
dataset, VG150-curated, based on the annotations of the popular Visual Genome
dataset. We show through a set of experiments that this dataset contains more
high-quality and diverse annotations than the one usually use in SGG. Finally,
we show the efficiency of this dataset in the task of Image Generation from
Scene Graphs.
- Abstract(参考訳): シーングラフの形で生画像から視覚的関係を構成することを学ぶことは、文脈依存による非常に困難な課題であるが、シーン理解に依存するコンピュータビジョンアプリケーションには不可欠である。
しかし、現在のシーングラフ生成(sgg)のアプローチは、下流タスクに有用なグラフを提供することを目的としていない。
その代わり、主な焦点は、よりきめ細かい関係を予測するためにデータ分布の偏りを解消することである。
とはいえ、すべてのきめ細かい関係は等しく関係がなく、少なくとも一部は現実世界のアプリケーションには役に立たない。
本稿では,画像生成などの下流タスクにおけるシーングラフの利用を容易にし,関連性の生成を優先する効率的なSGGタスクを提案する。
さらなるアプローチをサポートするために,人気のあるビジュアルゲノムデータセットのアノテーションに基づいて,vg150-curatedという新しいデータセットを提案する。
我々は、このデータセットが通常SGGで使用されるものよりも高品質で多様なアノテーションを含んでいることを示す一連の実験を通して示す。
最後に,シーングラフからの画像生成タスクにおいて,このデータセットの効率性を示す。
関連論文リスト
- DSGG: Dense Relation Transformer for an End-to-end Scene Graph Generation [13.058196732927135]
シーングラフ生成は、画像内のオブジェクト間の詳細な空間的および意味的な関係をキャプチャすることを目的としている。
既存のTransformerベースのメソッドは、オブジェクトに対して異なるクエリを使用し、述語するか、関係トリプレットに対して全体的クエリを利用する。
本稿では,シーングラフ検出を直接グラフ予測問題とみなす,DSGGと呼ばれるトランスフォーマーベースの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-21T23:43:30Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
現実のテキストグラフを対象とするフレキシブルな問合せフレームワークを開発した。
一般のテキストグラフに対する最初の検索拡張生成(RAG)手法を提案する。
G-Retrieverは、このタスクをSteiner Tree最適化問題として定式化し、グラフ上でRAGを実行する。
論文 参考訳(メタデータ) (2024-02-12T13:13:04Z) - SelfGraphVQA: A Self-Supervised Graph Neural Network for Scene-based
Question Answering [0.0]
シーングラフはマルチモーダル画像解析の有用なツールとして登場した。
理想化されたアノテートシーングラフを利用する現在の手法は、画像から抽出された予測シーングラフを使用する場合、一般化に苦慮している。
本稿では,事前学習したシーングラフ生成器を用いて,入力画像からシーングラフを抽出する。
論文 参考訳(メタデータ) (2023-10-03T07:14:53Z) - Learnable Graph Matching: A Practical Paradigm for Data Association [74.28753343714858]
これらの問題に対処するための一般的な学習可能なグラフマッチング法を提案する。
提案手法は,複数のMOTデータセット上での最先端性能を実現する。
画像マッチングでは,一般的な屋内データセットであるScanNetで最先端の手法より優れている。
論文 参考訳(メタデータ) (2023-03-27T17:39:00Z) - Location-Free Scene Graph Generation [45.366540803729386]
シーングラフ生成(SGG)は視覚的理解タスクであり、シーンをエンティティのグラフとして記述し、互いに関連付けることを目的としている。
既存の作業は、バウンディングボックスやセグメンテーションマスクといった形で位置ラベルに依存しており、アノテーションのコストが増加し、データセットの拡張が制限されている。
我々は、この依存関係を破り、位置のないシーングラフ生成(LF-SGG)を導入する。
本課題は, 空間的局所化を明示的に計算することなく, 実体のインスタンスと関係性を予測することを目的とする。
論文 参考訳(メタデータ) (2023-03-20T08:57:45Z) - Image Semantic Relation Generation [0.76146285961466]
シーングラフは複雑な画像情報を排除し、意味レベルの関係を利用して視覚モデルのバイアスを修正することができる。
本研究では,画像意味関係生成(ISRG)を提案する。
論文 参考訳(メタデータ) (2022-10-19T16:15:19Z) - Scene Graph Modification as Incremental Structure Expanding [61.84291817776118]
本研究では,既存のシーングラフを自然言語クエリに基づいて更新する方法を学習するために,シーングラフ修正(SGM)に注目した。
インクリメンタル構造拡張(ISE)の導入によるグラフ拡張タスクとしてのSGM
既存のデータセットよりも複雑なクエリと大きなシーングラフを含む、挑戦的なデータセットを構築します。
論文 参考訳(メタデータ) (2022-09-15T16:26:14Z) - Fine-Grained Scene Graph Generation with Data Transfer [127.17675443137064]
シーングラフ生成(SGG)は、画像中の三つ子(オブジェクト、述語、オブジェクト)を抽出することを目的としている。
最近の研究は、SGGを着実に進歩させ、高レベルの視覚と言語理解に有用なツールを提供している。
そこで本研究では,プレー・アンド・プラグ方式で適用可能で,約1,807の述語クラスを持つ大規模SGGに拡張可能な,内部・外部データ転送(IETrans)手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T12:26:56Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Hyper-relationship Learning Network for Scene Graph Generation [95.6796681398668]
本稿では,シーングラフ生成のためのハイパーリレーショナル学習ネットワークHLNを提案する。
我々は最も人気のあるSGGデータセット、すなわちVisual Genomeデータセット上でHLNを評価する。
例えば、提案されたHLNは、関係ごとのリコールを11.3%から13.1%に改善し、画像毎のリコールを19.8%から34.9%に維持する。
論文 参考訳(メタデータ) (2022-02-15T09:26:16Z) - Segmentation-grounded Scene Graph Generation [47.34166260639392]
ピクセルレベルセグメンテーションに基づくシーングラフ生成のためのフレームワークを提案する。
私たちのフレームワークは、基盤となるシーングラフ生成方法に無知です。
ターゲットデータセットと補助データセットの両方でマルチタスクで学習される。
論文 参考訳(メタデータ) (2021-04-29T08:54:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。