論文の概要: Plug-in Performative Optimization
- arxiv url: http://arxiv.org/abs/2305.18728v3
- Date: Tue, 28 May 2024 07:04:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 04:36:37.246713
- Title: Plug-in Performative Optimization
- Title(参考訳): プラグイン・パフォーマティブ最適化
- Authors: Licong Lin, Tijana Zrnic,
- Abstract要約: 提案手法は,性能予測に誤用される可能性のあるモデルを利用するための一般的なプロトコルについて検討する。
我々の結果は、たとえ不特定であっても、モデルが実際にパフォーマンス設定の学習に役立つという仮説を支持している。
- 参考スコア(独自算出の注目度): 13.251857204383928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When predictions are performative, the choice of which predictor to deploy influences the distribution of future observations. The overarching goal in learning under performativity is to find a predictor that has low \emph{performative risk}, that is, good performance on its induced distribution. One family of solutions for optimizing the performative risk, including bandits and other derivative-free methods, is agnostic to any structure in the performative feedback, leading to exceedingly slow convergence rates. A complementary family of solutions makes use of explicit \emph{models} for the feedback, such as best-response models in strategic classification, enabling faster rates. However, these rates critically rely on the feedback model being correct. In this work we study a general protocol for making use of possibly misspecified models in performative prediction, called \emph{plug-in performative optimization}. We show this solution can be far superior to model-agnostic strategies, as long as the misspecification is not too extreme. Our results support the hypothesis that models, even if misspecified, can indeed help with learning in performative settings.
- Abstract(参考訳): 予測が実行された場合、どの予測器をデプロイするかの選択は、将来の観測の分布に影響を与える。
演奏性の下での学習における過大な目標とは、低い‘emph{performative risk}’、すなわち、誘導分布における優れたパフォーマンスを持つ予測子を見つけることである。
バンディットやその他の微分自由法を含むパフォーマンスリスクを最適化する解の族は、パフォーマンスフィードバックのいかなる構造にも依存せず、収束速度が極端に遅くなる。
補完的な解の族は、戦略的分類における最良の応答モデルのようなフィードバックに明示的な \emph{models} を利用する。
しかしながら、これらの比率は、正しいフィードバックモデルに大きく依存しています。
本研究は, 性能予測において, 潜在的に不特定なモデルを用いるための一般的なプロトコルである<emph{plug-in Performanceative optimization}について検討する。
誤特定が過度に過度でない限り、このソリューションはモデルに依存しない戦略よりもはるかに優れていることを示す。
我々の結果は、たとえ不特定であっても、モデルが実際にパフォーマンス設定の学習に役立つという仮説を支持している。
関連論文リスト
- Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Source-Free Unsupervised Domain Adaptation with Hypothesis Consolidation
of Prediction Rationale [53.152460508207184]
Source-Free Unsupervised Domain Adaptation (SFUDA)は、モデルがターゲットのドメインラベルやソースドメインデータにアクセスせずに新しいドメインに適応する必要がある、という課題である。
本稿では,各サンプルについて複数の予測仮説を考察し,各仮説の背景にある理論的根拠について考察する。
最適性能を達成するために,モデル事前適応,仮説統合,半教師付き学習という3段階の適応プロセスを提案する。
論文 参考訳(メタデータ) (2024-02-02T05:53:22Z) - Performative Prediction with Bandit Feedback: Learning through
Reparameterization [25.169419772432796]
本研究では,データ分散の関数として性能予測を再パラメータ化するフレームワークを開発する。
提案手法は, モデルパラメータの次元にのみ含まれる, 実演用サンプルの総数に準線形な後悔境界を与える。
アプリケーション側では、YouTubeやTokTokのような大規模オンラインレコメンデーションシステムに有効な方法だと考えています。
論文 参考訳(メタデータ) (2023-05-01T21:31:29Z) - Performative Prediction with Neural Networks [22.66295224352892]
パフォーマンス予測は、予測するデータに影響を与えるモデルを学習するためのフレームワークである。
繰り返しリスク最小化法を用いて、性能的に安定な分類器を見つけるための標準収束結果は、データの分布がモデルのパラメータに連続であることを仮定する。
この研究では、データ分布はモデルの予測に関してリプシッツ連続であると仮定する。
論文 参考訳(メタデータ) (2023-04-14T01:12:48Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
本稿では,複数の学習可能なパラメータに対する共形予測の一般化を提案する。
本研究は, クラス内において, ほぼ有効な人口被覆率, ほぼ最適効率を実現していることを示す。
実験の結果,提案アルゴリズムは有効な予測セットを学習し,効率を著しく向上できることがわかった。
論文 参考訳(メタデータ) (2022-02-22T18:37:23Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Fast Rates for Contextual Linear Optimization [52.39202699484225]
提案手法は, 下流決定性能を直接最適化する手法よりもはるかに高速な, 後悔の収束率を実現する。
予測モデルは、既存のツールを使ったトレーニングが簡単かつ高速で、解釈が簡単で、私たちが示しているように、非常にうまく機能する決定につながる。
論文 参考訳(メタデータ) (2020-11-05T18:43:59Z) - Stochastic Optimization for Performative Prediction [31.876692592395777]
モデルパラメータを単に更新することと、新しいモデルをデプロイすることの違いについて検討する。
各更新後にモデルを厳格にデプロイし、再デプロイする前に数回の更新を行うための収束率を証明する。
彼らは、パフォーマンス効果の強さによって、どちらのアプローチも他方よりも優れる体制が存在することを説明している。
論文 参考訳(メタデータ) (2020-06-12T00:31:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。