Bayesian Decision Trees Inspired from Evolutionary Algorithms
- URL: http://arxiv.org/abs/2305.18774v1
- Date: Tue, 30 May 2023 06:17:35 GMT
- Title: Bayesian Decision Trees Inspired from Evolutionary Algorithms
- Authors: Efthyvoulos Drousiotis, Alexander M. Phillips, Paul G. Spirakis, Simon
Maskell
- Abstract summary: We propose a replacement of the Markov Chain Monte Carlo (MCMC) with an inherently parallel algorithm, the Sequential Monte Carlo (SMC)
Experiments show that SMC combined with the Evolutionary Algorithms (EA) can produce more accurate results compared to MCMC in 100 times fewer iterations.
- Score: 64.80360020499555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian Decision Trees (DTs) are generally considered a more advanced and
accurate model than a regular Decision Tree (DT) because they can handle
complex and uncertain data. Existing work on Bayesian DTs uses Markov Chain
Monte Carlo (MCMC) with an accept-reject mechanism and sample using naive
proposals to proceed to the next iteration, which can be slow because of the
burn-in time needed. We can reduce the burn-in period by proposing a more
sophisticated way of sampling or by designing a different numerical Bayesian
approach. In this paper, we propose a replacement of the MCMC with an
inherently parallel algorithm, the Sequential Monte Carlo (SMC), and a more
effective sampling strategy inspired by the Evolutionary Algorithms (EA).
Experiments show that SMC combined with the EA can produce more accurate
results compared to MCMC in 100 times fewer iterations.
Related papers
- Faster Sampling without Isoperimetry via Diffusion-based Monte Carlo [30.4930148381328]
Diffusion-based Monte Carlo (DMC) is a method to sample from a general target distribution beyond the isoperimetric condition.
DMC encountered high gradient complexity, resulting in an exponential dependency on the error tolerance $epsilon$ of the obtained samples.
We propose RS-DMC, based on a novel recursion-based score estimation method.
Our algorithm is provably much faster than the popular Langevin-based algorithms.
arXiv Detail & Related papers (2024-01-12T02:33:57Z) - Automatic Rao-Blackwellization for Sequential Monte Carlo with Belief
Propagation [4.956977275061968]
Exact Bayesian inference on state-space models(SSM) is in general untractable.
We propose a mixed inference algorithm that computes closed-form solutions using belief propagation as much as possible.
arXiv Detail & Related papers (2023-12-15T15:05:25Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - Reverse Diffusion Monte Carlo [19.35592726471155]
We propose a novel Monte Carlo sampling algorithm called reverse diffusion Monte Carlo (rdMC)
rdMC is distinct from the Markov chain Monte Carlo (MCMC) methods.
arXiv Detail & Related papers (2023-07-05T05:42:03Z) - Parallel Approaches to Accelerate Bayesian Decision Trees [1.9728521995447947]
We propose two methods for exploiting parallelism in the MCMC.
In the first, we replace the MCMC with another numerical Bayesian approach.
In the second, we consider data partitioning.
arXiv Detail & Related papers (2023-01-22T09:56:26Z) - Single MCMC Chain Parallelisation on Decision Trees [0.9137554315375919]
We propose a method to parallelise a single MCMC decision tree chain on an average laptop or personal computer.
Experiments showed that we could achieve 18 times faster running time provided that the serial and the parallel implementation are statistically identical.
arXiv Detail & Related papers (2022-07-26T07:07:51Z) - Knowledge Removal in Sampling-based Bayesian Inference [86.14397783398711]
When single data deletion requests come, companies may need to delete the whole models learned with massive resources.
Existing works propose methods to remove knowledge learned from data for explicitly parameterized models.
In this paper, we propose the first machine unlearning algorithm for MCMC.
arXiv Detail & Related papers (2022-03-24T10:03:01Z) - Orbital MCMC [82.54438698903775]
We propose two practical algorithms for constructing periodic orbits from any diffeomorphism.
We also perform an empirical study demonstrating the practical advantages of both kernels.
arXiv Detail & Related papers (2020-10-15T22:25:52Z) - Involutive MCMC: a Unifying Framework [64.46316409766764]
We describe a wide range of MCMC algorithms in terms of iMCMC.
We formulate a number of "tricks" which one can use as design principles for developing new MCMC algorithms.
We demonstrate the latter with two examples where we transform known reversible MCMC algorithms into more efficient irreversible ones.
arXiv Detail & Related papers (2020-06-30T10:21:42Z) - Planning in Markov Decision Processes with Gap-Dependent Sample
Complexity [48.98199700043158]
We propose MDP-GapE, a new trajectory-based Monte-Carlo Tree Search algorithm for planning in a Markov Decision Process.
We prove an upper bound on the number of calls to the generative models needed for MDP-GapE to identify a near-optimal action with high probability.
arXiv Detail & Related papers (2020-06-10T15:05:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.