UniScene: Multi-Camera Unified Pre-training via 3D Scene Reconstruction for Autonomous Driving
- URL: http://arxiv.org/abs/2305.18829v5
- Date: Sat, 27 Apr 2024 07:16:13 GMT
- Title: UniScene: Multi-Camera Unified Pre-training via 3D Scene Reconstruction for Autonomous Driving
- Authors: Chen Min, Liang Xiao, Dawei Zhao, Yiming Nie, Bin Dai,
- Abstract summary: We propose the first multi-camera unified pre-training framework, called UniScene.
We employ Occupancy as the general representation for the 3D scene, enabling the model to grasp geometric priors of the surrounding world.
UniScene shows a significant improvement of about 2.0% in mAP and 2.0% in NDS for multi-camera 3D object detection, as well as a 3% increase in mIoU for surrounding semantic scene completion.
- Score: 11.507979392707448
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-camera 3D perception has emerged as a prominent research field in autonomous driving, offering a viable and cost-effective alternative to LiDAR-based solutions. The existing multi-camera algorithms primarily rely on monocular 2D pre-training. However, the monocular 2D pre-training overlooks the spatial and temporal correlations among the multi-camera system. To address this limitation, we propose the first multi-camera unified pre-training framework, called UniScene, which involves initially reconstructing the 3D scene as the foundational stage and subsequently fine-tuning the model on downstream tasks. Specifically, we employ Occupancy as the general representation for the 3D scene, enabling the model to grasp geometric priors of the surrounding world through pre-training. A significant benefit of UniScene is its capability to utilize a considerable volume of unlabeled image-LiDAR pairs for pre-training purposes. The proposed multi-camera unified pre-training framework demonstrates promising results in key tasks such as multi-camera 3D object detection and surrounding semantic scene completion. When compared to monocular pre-training methods on the nuScenes dataset, UniScene shows a significant improvement of about 2.0% in mAP and 2.0% in NDS for multi-camera 3D object detection, as well as a 3% increase in mIoU for surrounding semantic scene completion. By adopting our unified pre-training method, a 25% reduction in 3D training annotation costs can be achieved, offering significant practical value for the implementation of real-world autonomous driving. Codes are publicly available at https://github.com/chaytonmin/UniScene.
Related papers
- Adapt3R: Adaptive 3D Scene Representation for Domain Transfer in Imitation Learning [28.80962812015936]
3D scene representations that incorporate observations from calibrated RGBD cameras have been proposed as a way to improve generalizability of IL policies.
We propose Adaptive 3D Scene Representation (Adapt3R) which uses a novel architecture to synthesize data from one or more RGBD cameras into a single vector that can then be used as conditioning for arbitrary IL algorithms.
We show that when trained end-to-end with several SOTA multi-task IL algorithms, Adapt3R maintains these algorithms' multi-task learning capacity while enabling zero-shot transfer to novel embodiments and camera poses.
arXiv Detail & Related papers (2025-03-06T18:17:09Z) - MonoSOWA: Scalable monocular 3D Object detector Without human Annotations [0.0]
We present a novel method to train a 3D object detector from a single RGB camera without domain-specific human annotations.
The method is evaluated on three public datasets, where despite using no human labels, it outperforms prior work by a significant margin.
arXiv Detail & Related papers (2025-01-16T11:35:22Z) - 3D Feature Distillation with Object-Centric Priors [9.626027459292926]
2D vision-language models such as CLIP have been widely popularized, due to their impressive capabilities for open-vocabulary grounding in 2D images.
Recent works aim to elevate 2D CLIP features to 3D via feature distillation, but either learn neural fields that are scene-specific or focus on indoor room scan data.
We show that our method reconstructs 3D CLIP features with improved grounding capacity and spatial consistency.
arXiv Detail & Related papers (2024-06-26T20:16:49Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
We present a novel framework that adapts various foundational models for the 3D point cloud segmentation task.
Our approach involves making initial predictions of 2D semantic masks using different large vision models.
To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting.
arXiv Detail & Related papers (2023-11-03T15:41:15Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
We introduce a novel universal 3D pre-training framework designed to facilitate the acquisition of efficient 3D representation.
For the first time, PonderV2 achieves state-of-the-art performance on 11 indoor and outdoor benchmarks, implying its effectiveness.
arXiv Detail & Related papers (2023-10-12T17:59:57Z) - UniPAD: A Universal Pre-training Paradigm for Autonomous Driving [74.34701012543968]
We present UniPAD, a novel self-supervised learning paradigm applying 3D differentiable rendering.
UniPAD implicitly encodes 3D space, facilitating the reconstruction of continuous 3D shape structures.
Our method significantly improves lidar-, camera-, and lidar-camera-based baseline by 9.1, 7.7, and 6.9 NDS, respectively.
arXiv Detail & Related papers (2023-10-12T14:39:58Z) - DistillBEV: Boosting Multi-Camera 3D Object Detection with Cross-Modal
Knowledge Distillation [25.933070263556374]
3D perception based on representations learned from multi-camera bird's-eye-view (BEV) is trending as cameras are cost-effective for mass production in autonomous driving industry.
There exists a distinct performance gap between multi-camera BEV and LiDAR based 3D object detection.
We propose to boost the representation learning of a multi-camera BEV based student detector by training it to imitate the features of a well-trained LiDAR based teacher detector.
arXiv Detail & Related papers (2023-09-26T17:56:21Z) - 3D Data Augmentation for Driving Scenes on Camera [50.41413053812315]
We propose a 3D data augmentation approach termed Drive-3DAug, aiming at augmenting the driving scenes on camera in the 3D space.
We first utilize Neural Radiance Field (NeRF) to reconstruct the 3D models of background and foreground objects.
Then, augmented driving scenes can be obtained by placing the 3D objects with adapted location and orientation at the pre-defined valid region of backgrounds.
arXiv Detail & Related papers (2023-03-18T05:51:05Z) - A Simple Baseline for Multi-Camera 3D Object Detection [94.63944826540491]
3D object detection with surrounding cameras has been a promising direction for autonomous driving.
We present SimMOD, a Simple baseline for Multi-camera Object Detection.
We conduct extensive experiments on the 3D object detection benchmark of nuScenes to demonstrate the effectiveness of SimMOD.
arXiv Detail & Related papers (2022-08-22T03:38:01Z) - VirtualPose: Learning Generalizable 3D Human Pose Models from Virtual
Data [69.64723752430244]
We introduce VirtualPose, a two-stage learning framework to exploit the hidden "free lunch" specific to this task.
The first stage transforms images to abstract geometry representations (AGR), and then the second maps them to 3D poses.
It addresses the generalization issue from two aspects: (1) the first stage can be trained on diverse 2D datasets to reduce the risk of over-fitting to limited appearance; (2) the second stage can be trained on diverse AGR synthesized from a large number of virtual cameras and poses.
arXiv Detail & Related papers (2022-07-20T14:47:28Z) - CanonPose: Self-Supervised Monocular 3D Human Pose Estimation in the
Wild [31.334715988245748]
We propose a self-supervised approach that learns a single image 3D pose estimator from unlabeled multi-view data.
In contrast to most existing methods, we do not require calibrated cameras and can therefore learn from moving cameras.
Key to the success are new, unbiased reconstruction objectives that mix information across views and training samples.
arXiv Detail & Related papers (2020-11-30T10:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.