論文の概要: Semi-supervised Pathological Image Segmentation via Cross Distillation
of Multiple Attentions
- arxiv url: http://arxiv.org/abs/2305.18830v1
- Date: Tue, 30 May 2023 08:23:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 17:30:14.170642
- Title: Semi-supervised Pathological Image Segmentation via Cross Distillation
of Multiple Attentions
- Title(参考訳): マルチアテンションのクロス蒸留による半教師付き病理画像分割
- Authors: Lanfeng Zhong, Xin Liao, Shaoting Zhang and Guotai Wang
- Abstract要約: 我々は,CDMA(Cross Distillation of Multiple Attentions)に基づく新しい半教師付き学習(SSL)手法を提案する。
提案したCDMAは,公開DigestPathデータセット上の8つの最先端SSL手法と比較した。
- 参考スコア(独自算出の注目度): 19.236045479697797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Segmentation of pathological images is a crucial step for accurate cancer
diagnosis. However, acquiring dense annotations of such images for training is
labor-intensive and time-consuming. To address this issue, Semi-Supervised
Learning (SSL) has the potential for reducing the annotation cost, but it is
challenged by a large number of unlabeled training images. In this paper, we
propose a novel SSL method based on Cross Distillation of Multiple Attentions
(CDMA) to effectively leverage unlabeled images. Firstly, we propose a
Multi-attention Tri-branch Network (MTNet) that consists of an encoder and a
three-branch decoder, with each branch using a different attention mechanism
that calibrates features in different aspects to generate diverse outputs.
Secondly, we introduce Cross Decoder Knowledge Distillation (CDKD) between the
three decoder branches, allowing them to learn from each other's soft labels to
mitigate the negative impact of incorrect pseudo labels in training.
Additionally, uncertainty minimization is applied to the average prediction of
the three branches, which further regularizes predictions on unlabeled images
and encourages inter-branch consistency. Our proposed CDMA was compared with
eight state-of-the-art SSL methods on the public DigestPath dataset, and the
experimental results showed that our method outperforms the other approaches
under different annotation ratios. The code is available at
\href{https://github.com/HiLab-git/CDMA}{https://github.com/HiLab-git/CDMA.}
- Abstract(参考訳): 病理像の分離は正確な癌診断にとって重要なステップである。
しかし、こうした画像の濃密なアノテーションの取得は労働集約的で時間を要する。
この問題に対処するため、Semi-Supervised Learning (SSL) はアノテーションのコストを削減できる可能性を持っているが、多くの未ラベルのトレーニング画像によって問題視されている。
本稿では,CDMA(Cross Distillation of Multiple Attentions)に基づくSSL方式を提案する。
まず,エンコーダと3分岐デコーダから構成されるマルチアテンショントリブランチネットワーク(MTNet)を提案する。
第2に,3つのデコーダ枝間のクロスデコーダ知識蒸留(cdkd)を導入することで,相互のソフトラベルから学習し,不正確な擬似ラベルのトレーニングにおける悪影響を軽減する。
さらに、不確実性最小化は3つのブランチの平均予測に適用され、ラベルのない画像の予測をさらに規則化し、ブランチ間の一貫性を促進する。
提案するcdmaを公開ダイジェストパスデータセット上の8つの最先端ssl法と比較し,提案手法がアノテーション比率の異なる他の手法よりも優れていることを示した。
コードは \href{https://github.com/HiLab-git/CDMA}{https://github.com/HiLab-git/CDMAで入手できる。
}
関連論文リスト
- Scribble-based 3D Multiple Abdominal Organ Segmentation via
Triple-branch Multi-dilated Network with Pixel- and Class-wise Consistency [20.371144313009122]
そこで本研究では,CTからスクリブル制御された多発性腹部臓器分節に対する2つの整合性制約を有する新しい3Dフレームワークを提案する。
より安定した教師なし学習のために、voxel-wiseの不確実性を用いて、ソフトな擬似ラベルを修正し、各デコーダの出力を監督する。
公開WORDデータセットの実験により,本手法は既存の5つのスクリブル教師付き手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-09-18T12:50:58Z) - Dual-Decoder Consistency via Pseudo-Labels Guided Data Augmentation for
Semi-Supervised Medical Image Segmentation [13.707121013895929]
本稿では, Pseudo-Labels Guided Data Augmentation を用いた新しい半教師付き学習手法である Dual-Decoder Consistency を提案する。
我々は、同じエンコーダを維持しながら、生徒と教師のネットワークに異なるデコーダを使用します。
ラベルのないデータから学習するために、教師ネットワークによって生成された擬似ラベルを作成し、擬似ラベルでトレーニングデータを増強する。
論文 参考訳(メタデータ) (2023-08-31T09:13:34Z) - M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
医用画像から多様なセグメンテーションを仕上げるマルチスケールサブトラクションネットワーク(M$2$SNet)を提案する。
本手法は,4つの異なる医用画像セグメンテーションタスクの11つのデータセットに対して,異なる評価基準の下で,ほとんどの最先端手法に対して好意的に機能する。
論文 参考訳(メタデータ) (2023-03-20T06:26:49Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
我々は、デコードフェーズに2つの並列分岐を持つMixed-UNetという新しいモデルを開発する。
地域病院や公開データセットから収集したデータセットに対して,いくつかの一般的なディープラーニングに基づくセグメンテーションアプローチに対して,設計したMixed-UNetを評価した。
論文 参考訳(メタデータ) (2022-05-06T08:37:02Z) - Unsupervised Domain Adaptation with Contrastive Learning for OCT
Segmentation [49.59567529191423]
本稿では,新しい未ラベル領域からのボリューム画像のセグメンテーションのための,新しい半教師付き学習フレームワークを提案する。
教師付き学習とコントラスト学習を併用し、3次元の近傍スライス間の類似性を利用したコントラストペア方式を導入する。
論文 参考訳(メタデータ) (2022-03-07T19:02:26Z) - MisMatch: Calibrated Segmentation via Consistency on Differential
Morphological Feature Perturbations with Limited Labels [5.500466607182699]
半教師付き学習は、医用画像におけるラベル不足の問題に対処する上で有望なパラダイムである。
MisMatchは、ペアの予測間の一貫性に基づいた半教師付きセグメンテーションフレームワークである。
論文 参考訳(メタデータ) (2021-10-23T09:22:41Z) - Rank-Consistency Deep Hashing for Scalable Multi-Label Image Search [90.30623718137244]
スケーラブルなマルチラベル画像検索のための新しいディープハッシュ法を提案する。
2つの空間の類似性順序を整列するために、新しい階数整合性目的を適用した。
強力な損失関数は、意味的類似性とハミング距離が一致しないサンプルをペナルティ化するように設計されている。
論文 参考訳(メタデータ) (2021-02-02T13:46:58Z) - RAR-U-Net: a Residual Encoder to Attention Decoder by Residual
Connections Framework for Spine Segmentation under Noisy Labels [9.81466618834274]
本稿では,ノイズラベルに基づく医用画像分割手法を提案する。
この方法は4つの新しいコントリビューションを取り入れ、ディープラーニングパラダイムの下で機能する。
実験結果は,脊椎CTのベンチマークデータベース上で公開されている。
論文 参考訳(メタデータ) (2020-09-27T15:32:50Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
本稿では,教師付き学習手法よりも少ないアノテーションを要求できる新しいカテーテルセグメンテーション手法を提案する。
提案手法では,Voxelレベルのアノテーションを避けるために,深層Q学習を事前局所化ステップとみなす。
検出されたカテーテルでは、パッチベースのDual-UNetを使用してカテーテルを3Dボリュームデータに分割する。
論文 参考訳(メタデータ) (2020-06-25T21:10:04Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
本研究では、畳み込みニューラルネットワークによるセグメンテーションを改善するために、オートエンコーダ抽出機能の可能性を検討する。
コンボリューション・オートエンコーダを用いてラベルのないデータから特徴を抽出し,CT画像における3次元肝セグメンテーションの目標タスクを実行するために,マルチスケールの完全畳み込みCNNを用いた。
論文 参考訳(メタデータ) (2020-03-17T20:20:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。