ReTR: Modeling Rendering Via Transformer for Generalizable Neural
Surface Reconstruction
- URL: http://arxiv.org/abs/2305.18832v2
- Date: Thu, 2 Nov 2023 08:55:48 GMT
- Title: ReTR: Modeling Rendering Via Transformer for Generalizable Neural
Surface Reconstruction
- Authors: Yixun Liang, Hao He, Ying-cong Chen
- Abstract summary: Reconstruction TRansformer (ReTR) is a novel framework that leverages the transformer architecture to the rendering process.
By operating within a high-dimensional feature space rather than the color space, ReTR mitigates sensitivity to projected colors in source views.
- Score: 24.596408773471477
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalizable neural surface reconstruction techniques have attracted great
attention in recent years. However, they encounter limitations of low
confidence depth distribution and inaccurate surface reasoning due to the
oversimplified volume rendering process employed. In this paper, we present
Reconstruction TRansformer (ReTR), a novel framework that leverages the
transformer architecture to redesign the rendering process, enabling complex
render interaction modeling. It introduces a learnable $\textit{meta-ray
token}$ and utilizes the cross-attention mechanism to simulate the interaction
of rendering process with sampled points and render the observed color.
Meanwhile, by operating within a high-dimensional feature space rather than the
color space, ReTR mitigates sensitivity to projected colors in source views.
Such improvements result in accurate surface assessment with high confidence.
We demonstrate the effectiveness of our approach on various datasets,
showcasing how our method outperforms the current state-of-the-art approaches
in terms of reconstruction quality and generalization ability. $\textit{Our
code is available at }$ https://github.com/YixunLiang/ReTR.
Related papers
- REFRAME: Reflective Surface Real-Time Rendering for Mobile Devices [51.983541908241726]
This work tackles the challenging task of achieving real-time novel view synthesis for reflective surfaces across various scenes.
Existing real-time rendering methods, especially those based on meshes, often have subpar performance in modeling surfaces with rich view-dependent appearances.
We decompose the color into diffuse and specular, and model the specular color in the reflected direction based on a neural environment map.
arXiv Detail & Related papers (2024-03-25T07:07:50Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAM is a novel neural RGB-D semantic SLAM approach featuring a hybrid representation.
Our method integrates multi-view geometry constraints with image-based feature extraction to improve appearance details.
Our experimental results achieve state-of-the-art performance on both synthetic data and real-world data tracking.
arXiv Detail & Related papers (2023-11-30T21:34:44Z) - Indoor Scene Reconstruction with Fine-Grained Details Using Hybrid Representation and Normal Prior Enhancement [50.56517624931987]
The reconstruction of indoor scenes from multi-view RGB images is challenging due to the coexistence of flat and texture-less regions.
Recent methods leverage neural radiance fields aided by predicted surface normal priors to recover the scene geometry.
This work aims to reconstruct high-fidelity surfaces with fine-grained details by addressing the above limitations.
arXiv Detail & Related papers (2023-09-14T12:05:29Z) - NeuS-PIR: Learning Relightable Neural Surface using Pre-Integrated Rendering [23.482941494283978]
This paper presents a method, namely NeuS-PIR, for recovering relightable neural surfaces from multi-view images or video.
Unlike methods based on NeRF and discrete meshes, our method utilizes implicit neural surface representation to reconstruct high-quality geometry.
Our method enables advanced applications such as relighting, which can be seamlessly integrated with modern graphics engines.
arXiv Detail & Related papers (2023-06-13T09:02:57Z) - ENVIDR: Implicit Differentiable Renderer with Neural Environment
Lighting [9.145875902703345]
We introduce ENVIDR, a rendering and modeling framework for high-quality rendering and reconstruction of surfaces with challenging specular reflections.
We first propose a novel neural with decomposed rendering to learn the interaction between surface and environment lighting.
We then propose an SDF-based neural surface model that leverages this learned neural to represent general scenes.
arXiv Detail & Related papers (2023-03-23T04:12:07Z) - VolRecon: Volume Rendering of Signed Ray Distance Functions for
Generalizable Multi-View Reconstruction [64.09702079593372]
VolRecon is a novel generalizable implicit reconstruction method with Signed Ray Distance Function (SRDF)
On DTU dataset, VolRecon outperforms SparseNeuS by about 30% in sparse view reconstruction and achieves comparable accuracy as MVSNet in full view reconstruction.
arXiv Detail & Related papers (2022-12-15T18:59:54Z) - NeuS: Learning Neural Implicit Surfaces by Volume Rendering for
Multi-view Reconstruction [88.02850205432763]
We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inputs.
Existing neural surface reconstruction approaches, such as DVR and IDR, require foreground mask as supervision.
We observe that the conventional volume rendering method causes inherent geometric errors for surface reconstruction.
We propose a new formulation that is free of bias in the first order of approximation, thus leading to more accurate surface reconstruction even without the mask supervision.
arXiv Detail & Related papers (2021-06-20T12:59:42Z) - UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for
Multi-View Reconstruction [61.17219252031391]
We present a novel method for reconstructing surfaces from multi-view images using Neural implicit 3D representations.
Our key insight is that implicit surface models and radiance fields can be formulated in a unified way, enabling both surface and volume rendering.
Our experiments demonstrate that we outperform NeRF in terms of reconstruction quality while performing on par with IDR without requiring masks.
arXiv Detail & Related papers (2021-04-20T15:59:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.