NeuS-PIR: Learning Relightable Neural Surface using Pre-Integrated Rendering
- URL: http://arxiv.org/abs/2306.07632v3
- Date: Tue, 26 Mar 2024 07:00:27 GMT
- Title: NeuS-PIR: Learning Relightable Neural Surface using Pre-Integrated Rendering
- Authors: Shi Mao, Chenming Wu, Zhelun Shen, Yifan Wang, Dayan Wu, Liangjun Zhang,
- Abstract summary: This paper presents a method, namely NeuS-PIR, for recovering relightable neural surfaces from multi-view images or video.
Unlike methods based on NeRF and discrete meshes, our method utilizes implicit neural surface representation to reconstruct high-quality geometry.
Our method enables advanced applications such as relighting, which can be seamlessly integrated with modern graphics engines.
- Score: 23.482941494283978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a method, namely NeuS-PIR, for recovering relightable neural surfaces using pre-integrated rendering from multi-view images or video. Unlike methods based on NeRF and discrete meshes, our method utilizes implicit neural surface representation to reconstruct high-quality geometry, which facilitates the factorization of the radiance field into two components: a spatially varying material field and an all-frequency lighting representation. This factorization, jointly optimized using an adapted differentiable pre-integrated rendering framework with material encoding regularization, in turn addresses the ambiguity of geometry reconstruction and leads to better disentanglement and refinement of each scene property. Additionally, we introduced a method to distil indirect illumination fields from the learned representations, further recovering the complex illumination effect like inter-reflection. Consequently, our method enables advanced applications such as relighting, which can be seamlessly integrated with modern graphics engines. Qualitative and quantitative experiments have shown that NeuS-PIR outperforms existing methods across various tasks on both synthetic and real datasets. Source code is available at https://github.com/Sheldonmao/NeuSPIR
Related papers
- RISE-SDF: a Relightable Information-Shared Signed Distance Field for Glossy Object Inverse Rendering [26.988572852463815]
In this paper, we propose a novel end-to-end relightable neural inverse rendering system.
Our algorithm achieves state-of-the-art performance in inverse rendering and relighting.
Our experiments demonstrate that our algorithm achieves state-of-the-art performance in inverse rendering and relighting.
arXiv Detail & Related papers (2024-09-30T09:42:10Z) - NePF: Neural Photon Field for Single-Stage Inverse Rendering [6.977356702921476]
We present a novel single-stage framework, Neural Photon Field (NePF), to address the ill-posed inverse rendering from multi-view images.
NePF achieves this unification by fully utilizing the physical implication behind the weight function of neural implicit surfaces.
We evaluate our method on both real and synthetic datasets.
arXiv Detail & Related papers (2023-11-20T06:15:46Z) - Neural Relighting with Subsurface Scattering by Learning the Radiance
Transfer Gradient [73.52585139592398]
We propose a novel framework for learning the radiance transfer field via volume rendering.
We will release our code and a novel light stage dataset of objects with subsurface scattering effects publicly available.
arXiv Detail & Related papers (2023-06-15T17:56:04Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
TensoIR is a novel inverse rendering approach based on tensor factorization and neural fields.
TensoRF is a state-of-the-art approach for radiance field modeling.
arXiv Detail & Related papers (2023-04-24T21:39:13Z) - NeAI: A Pre-convoluted Representation for Plug-and-Play Neural Ambient
Illumination [28.433403714053103]
We propose a framework named neural ambient illumination (NeAI)
NeAI uses Neural Radiance Fields (NeRF) as a lighting model to handle complex lighting in a physically based way.
Experiments demonstrate the superior performance of novel-view rendering compared to previous works.
arXiv Detail & Related papers (2023-04-18T06:32:30Z) - NeILF++: Inter-Reflectable Light Fields for Geometry and Material
Estimation [36.09503501647977]
We formulate the lighting of a static scene as one neural incident light field (NeILF) and one outgoing neural radiance field (NeRF)
The proposed method is able to achieve state-of-the-art results in terms of geometry reconstruction quality, material estimation accuracy, and the fidelity of novel view rendering.
arXiv Detail & Related papers (2023-03-30T04:59:48Z) - NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field
Indirect Illumination [48.42173911185454]
Inverse rendering methods aim to estimate geometry, materials and illumination from multi-view RGB images.
We propose an end-to-end inverse rendering pipeline that decomposes materials and illumination from multi-view images.
arXiv Detail & Related papers (2023-03-29T12:05:19Z) - Physics-based Indirect Illumination for Inverse Rendering [70.27534648770057]
We present a physics-based inverse rendering method that learns the illumination, geometry, and materials of a scene from posed multi-view RGB images.
As a side product, our physics-based inverse rendering model also facilitates flexible and realistic material editing as well as relighting.
arXiv Detail & Related papers (2022-12-09T07:33:49Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
We present an efficient method for joint optimization of materials and lighting from multi-view image observations.
We leverage meshes with spatially-varying materials and environment that can be deployed in any traditional graphics engine.
arXiv Detail & Related papers (2021-11-24T13:58:20Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.