Elongated Physiological Structure Segmentation via Spatial and Scale
Uncertainty-aware Network
- URL: http://arxiv.org/abs/2305.18865v1
- Date: Tue, 30 May 2023 08:57:31 GMT
- Title: Elongated Physiological Structure Segmentation via Spatial and Scale
Uncertainty-aware Network
- Authors: Yinglin Zhang, Ruiling Xi, Huazhu Fu, Dave Towey, RuiBin Bai, Risa
Higashita, Jiang Liu
- Abstract summary: We present a spatial and scale uncertainty-aware network (SSU-Net) to highlight ambiguous regions and integrate hierarchical structure contexts.
Experiment results show that the SSU-Net performs best on cornea endothelial cell and retinal vessel segmentation tasks.
- Score: 28.88756808141357
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Robust and accurate segmentation for elongated physiological structures is
challenging, especially in the ambiguous region, such as the corneal
endothelium microscope image with uneven illumination or the fundus image with
disease interference. In this paper, we present a spatial and scale
uncertainty-aware network (SSU-Net) that fully uses both spatial and scale
uncertainty to highlight ambiguous regions and integrate hierarchical structure
contexts. First, we estimate epistemic and aleatoric spatial uncertainty maps
using Monte Carlo dropout to approximate Bayesian networks. Based on these
spatial uncertainty maps, we propose the gated soft uncertainty-aware (GSUA)
module to guide the model to focus on ambiguous regions. Second, we extract the
uncertainty under different scales and propose the multi-scale
uncertainty-aware (MSUA) fusion module to integrate structure contexts from
hierarchical predictions, strengthening the final prediction. Finally, we
visualize the uncertainty map of final prediction, providing interpretability
for segmentation results. Experiment results show that the SSU-Net performs
best on cornea endothelial cell and retinal vessel segmentation tasks.
Moreover, compared with counterpart uncertainty-based methods, SSU-Net is more
accurate and robust.
Related papers
- Evidential Semantic Mapping in Off-road Environments with Uncertainty-aware Bayesian Kernel Inference [5.120567378386614]
We propose an evidential semantic mapping framework, which can enhance reliability in perceptually challenging off-road environments.
By adaptively handling semantic uncertainties, the proposed framework constructs robust representations of the surroundings even in previously unseen environments.
arXiv Detail & Related papers (2024-03-21T05:13:34Z) - Topology-Aware Uncertainty for Image Segmentation [19.248891926246383]
We focus on uncertainty estimation for such tasks, so that highly uncertain, and thus error-prone structures can be identified for human annotators to verify.
We propose a joint prediction model that estimates the uncertainty of a structure while taking the neighboring structures into consideration.
We also propose a novel Probabilistic DMT to model the inherent uncertainty within each structure.
arXiv Detail & Related papers (2023-06-09T05:01:55Z) - Fully Bayesian VIB-DeepSSM [0.0]
Statistical shape modeling (SSM) enables quantitative analysis of anatomical shapes, informing clinical diagnosis.
DeepSSM is an effective, principled framework for predicting probabilistic shapes of anatomy from images with aleatoric uncertainty quantification.
We derive a fully Bayesian VIB formulation and demonstrate the efficacy of two scalable implementation approaches.
Experiments on synthetic shapes and left atrium data demonstrate that the fully Bayesian VIB network predicts SSM from images with improved uncertainty reasoning without sacrificing accuracy.
arXiv Detail & Related papers (2023-05-09T23:01:05Z) - S3M: Scalable Statistical Shape Modeling through Unsupervised
Correspondences [91.48841778012782]
We propose an unsupervised method to simultaneously learn local and global shape structures across population anatomies.
Our pipeline significantly improves unsupervised correspondence estimation for SSMs compared to baseline methods.
Our method is robust enough to learn from noisy neural network predictions, potentially enabling scaling SSMs to larger patient populations.
arXiv Detail & Related papers (2023-04-15T09:39:52Z) - Uncertainty estimation in Deep Learning for Panoptic segmentation [0.46040036610482665]
We show how ensemble-based uncertainty estimation approaches can be used in the panoptic segmentation domain.
Results are demonstrated on the COCO, KITTI-STEP and VIPER datasets.
arXiv Detail & Related papers (2023-04-04T19:54:35Z) - Improving Uncertainty Quantification of Variance Networks by
Tree-Structured Learning [10.566352737844369]
We propose a novel tree-structured local neural network model that partitions the feature space into multiple regions based on uncertainty heterogeneity.
The proposed Uncertainty-Splitting Neural Regression Tree (USNRT) employs novel splitting criteria.
USNRT or its ensemble shows superior performance compared to some recent popular methods for quantifying uncertainty with variances.
arXiv Detail & Related papers (2022-12-24T05:25:09Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical
Image Segmentation [92.9634065964963]
We present a new semi-supervised segmentation model, namely, conservative-radical network (CoraNet) based on our uncertainty estimation and separate self-training strategy.
Compared with the current state of the art, our CoraNet has demonstrated superior performance.
arXiv Detail & Related papers (2021-10-17T08:49:33Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
We propose a simple yet effective framework, named Dual Objective Networks (DONet), to improve the skin lesion segmentation.
Our DONet adopts two symmetric decoders to produce different predictions for approaching different objectives.
To address the challenge of large variety of lesion scales and shapes in dermoscopic images, we additionally propose a recurrent context encoding module (RCEM)
arXiv Detail & Related papers (2020-08-19T06:02:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.