Investigating model performance in language identification: beyond
simple error statistics
- URL: http://arxiv.org/abs/2305.18925v1
- Date: Tue, 30 May 2023 10:32:53 GMT
- Title: Investigating model performance in language identification: beyond
simple error statistics
- Authors: Suzy J. Styles, Victoria Y. H. Chua, Fei Ting Woon, Hexin Liu, Leibny
Paola Garcia Perera, Sanjeev Khudanpur, Andy W. H. Khong, Justin Dauwels
- Abstract summary: Language development experts need tools that can automatically identify languages from fluent, conversational speech.
We investigate how well a number of language identification systems perform on individual recordings and speech units with different linguistic properties.
- Score: 28.128924654154087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language development experts need tools that can automatically identify
languages from fluent, conversational speech, and provide reliable estimates of
usage rates at the level of an individual recording. However, language
identification systems are typically evaluated on metrics such as equal error
rate and balanced accuracy, applied at the level of an entire speech corpus.
These overview metrics do not provide information about model performance at
the level of individual speakers, recordings, or units of speech with different
linguistic characteristics. Overview statistics may therefore mask systematic
errors in model performance for some subsets of the data, and consequently,
have worse performance on data derived from some subsets of human speakers,
creating a kind of algorithmic bias. In the current paper, we investigate how
well a number of language identification systems perform on individual
recordings and speech units with different linguistic properties in the MERLIon
CCS Challenge. The Challenge dataset features accented English-Mandarin
code-switched child-directed speech.
Related papers
- Large Language Models for Dysfluency Detection in Stuttered Speech [16.812800649507302]
Accurately detecting dysfluencies in spoken language can help to improve the performance of automatic speech and language processing components.
Inspired by the recent trend towards the deployment of large language models (LLMs) as universal learners and processors of non-lexical inputs, we approach the task of multi-label dysfluency detection as a language modeling problem.
We present hypotheses candidates generated with an automatic speech recognition system and acoustic representations extracted from an audio encoder model to an LLM, and finetune the system to predict dysfluency labels on three datasets containing English and German stuttered speech.
arXiv Detail & Related papers (2024-06-16T17:51:22Z) - An Initial Investigation of Language Adaptation for TTS Systems under Low-resource Scenarios [76.11409260727459]
This paper explores the language adaptation capability of ZMM-TTS, a recent SSL-based multilingual TTS system.
We demonstrate that the similarity in phonetics between the pre-training and target languages, as well as the language category, affects the target language's adaptation performance.
arXiv Detail & Related papers (2024-06-13T08:16:52Z) - Learning Phonotactics from Linguistic Informants [54.086544221761486]
Our model iteratively selects or synthesizes a data-point according to one of a range of information-theoretic policies.
We find that the information-theoretic policies that our model uses to select items to query the informant achieve sample efficiency comparable to, or greater than, fully supervised approaches.
arXiv Detail & Related papers (2024-05-08T00:18:56Z) - Multilingual self-supervised speech representations improve the speech
recognition of low-resource African languages with codeswitching [65.74653592668743]
Finetuning self-supervised multilingual representations reduces absolute word error rates by up to 20%.
In circumstances with limited training data finetuning self-supervised representations is a better performing and viable solution.
arXiv Detail & Related papers (2023-11-25T17:05:21Z) - SLUE Phase-2: A Benchmark Suite of Diverse Spoken Language Understanding
Tasks [88.4408774253634]
Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community.
There are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers.
Recent work has begun to introduce such benchmark for several tasks.
arXiv Detail & Related papers (2022-12-20T18:39:59Z) - Integrating Knowledge in End-to-End Automatic Speech Recognition for
Mandarin-English Code-Switching [41.88097793717185]
Code-Switching (CS) is a common linguistic phenomenon in multilingual communities.
This paper presents our investigations on end-to-end speech recognition for Mandarin-English CS speech.
arXiv Detail & Related papers (2021-12-19T17:31:15Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
We propose a novel LSTM-based generative speech LM based on linguistic units including syllables and phonemes.
With a limited dataset, orders of magnitude smaller than that required by contemporary generative models, our model closely approximates babbling speech.
We show the effect of training with auxiliary text LMs, multitask learning objectives, and auxiliary articulatory features.
arXiv Detail & Related papers (2021-10-31T22:48:30Z) - Generative Spoken Language Modeling from Raw Audio [42.153136032037175]
Generative spoken language modeling involves learning jointly the acoustic and linguistic characteristics of a language from raw audio only (without text or labels)
We introduce metrics to automatically evaluate the generated output in terms of acoustic and linguistic quality in two associated end-to-end tasks.
We test baseline systems consisting of a discrete speech encoder (returning discrete, low, pseudo-text units), a generative language model (trained on pseudo-text units) and a speech decoder.
arXiv Detail & Related papers (2021-02-01T21:41:40Z) - Curious Case of Language Generation Evaluation Metrics: A Cautionary
Tale [52.663117551150954]
A few popular metrics remain as the de facto metrics to evaluate tasks such as image captioning and machine translation.
This is partly due to ease of use, and partly because researchers expect to see them and know how to interpret them.
In this paper, we urge the community for more careful consideration of how they automatically evaluate their models.
arXiv Detail & Related papers (2020-10-26T13:57:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.