SpeechR: A Benchmark for Speech Reasoning in Large Audio-Language Models
- URL: http://arxiv.org/abs/2508.02018v1
- Date: Mon, 04 Aug 2025 03:28:04 GMT
- Title: SpeechR: A Benchmark for Speech Reasoning in Large Audio-Language Models
- Authors: Wanqi Yang, Yanda Li, Yunchao Wei, Meng Fang, Ling Chen,
- Abstract summary: SpeechR is a unified benchmark for evaluating reasoning over speech in large audio-language models.<n>It evaluates models along three key dimensions: factual retrieval, procedural inference, and normative judgment.<n> Evaluations on eleven state-of-the-art LALMs reveal that high transcription accuracy does not translate into strong reasoning capabilities.
- Score: 60.72029578488467
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large audio-language models (LALMs) have achieved near-human performance in sentence-level transcription and emotion recognition. However, existing evaluations focus mainly on surface-level perception, leaving the capacity of models for contextual and inference-driven reasoning in speech-based scenarios insufficiently examined. To address this gap, we introduce SpeechR, a unified benchmark for evaluating reasoning over speech in large audio-language models. SpeechR evaluates models along three key dimensions: factual retrieval, procedural inference, and normative judgment. It includes three distinct evaluation formats. The multiple-choice version measures answer selection accuracy. The generative version assesses the coherence and logical consistency of reasoning chains. The acoustic-feature version investigates whether variations in stress and emotion affect reasoning performance. Evaluations on eleven state-of-the-art LALMs reveal that high transcription accuracy does not translate into strong reasoning capabilities. SpeechR establishes a structured benchmark for evaluating reasoning in spoken language, enabling more targeted analysis of model capabilities across diverse dialogue-based tasks.
Related papers
- SpeechIQ: Speech Intelligence Quotient Across Cognitive Levels in Voice Understanding Large Language Models [76.07833875692722]
Speech-based Intelligence Quotient (SIQ) is a new form of human cognition-inspired evaluation pipeline for voice understanding large language models.<n>Our framework represents a first-of-its-kind intelligence examination that bridges cognitive principles with voice-oriented benchmarks.
arXiv Detail & Related papers (2025-07-25T15:12:06Z) - WildSpeech-Bench: Benchmarking Audio LLMs in Natural Speech Conversation [44.17470719671929]
We present a novel approach to thoroughly evaluate Audio Large Language Models (LLMs) in practical speech conversations.<n>We systematically curate real-world chat data relevant to spoken scenarios, introduce diversity in speaker attributes and acoustic conditions, and augment the dataset with speech-specific phenomena.<n>We conduct comprehensive testing and detailed analysis of various mainstream speech models, revealing significant differences in model performance across different speech scenarios.
arXiv Detail & Related papers (2025-06-27T03:18:45Z) - Speech-IFEval: Evaluating Instruction-Following and Quantifying Catastrophic Forgetting in Speech-Aware Language Models [49.1574468325115]
We introduce Speech-IFeval, an evaluation framework designed to assess instruction-following capabilities.<n>Recent SLMs integrate speech perception with large language models (LLMs), often degrading textual capabilities due to speech-centric training.<n>Our findings show that most SLMs struggle with even basic instructions, performing far worse than text-based LLMs.
arXiv Detail & Related papers (2025-05-25T08:37:55Z) - Classification of Spontaneous and Scripted Speech for Multilingual Audio [9.925703861731506]
Distinguishing scripted from spontaneous speech is an essential tool for better understanding how speech styles influence speech processing research.<n>This paper addresses the challenge of building a classifier that generalises well across different formats and languages.<n>We systematically evaluate models ranging from traditional, handcrafted acoustic and prosodic features to advanced audio transformers.
arXiv Detail & Related papers (2024-12-16T15:45:10Z) - Paralinguistics-Enhanced Large Language Modeling of Spoken Dialogue [71.15186328127409]
Paralinguistics-enhanced Generative Pretrained Transformer (ParalinGPT)
Model takes the conversational context of text, speech embeddings, and paralinguistic attributes as input prompts within a serialized multitasking framework.
We utilize the Switchboard-1 corpus, including its sentiment labels as the paralinguistic attribute, as our spoken dialogue dataset.
arXiv Detail & Related papers (2023-12-23T18:14:56Z) - EmphAssess : a Prosodic Benchmark on Assessing Emphasis Transfer in Speech-to-Speech Models [25.683827726880594]
We introduce EmphAssess, a benchmark designed to evaluate the capability of speech-to-speech models to encode and reproduce prosodic emphasis.
We apply this to two tasks: speech resynthesis and speech-to-speech translation.
In both cases, the benchmark evaluates the ability of the model to encode emphasis in the speech input and accurately reproduce it in the output.
As part of the evaluation pipeline, we introduce EmphaClass, a new model that classifies emphasis at the frame or word level.
arXiv Detail & Related papers (2023-12-21T17:47:33Z) - Disco-Bench: A Discourse-Aware Evaluation Benchmark for Language
Modelling [70.23876429382969]
We propose a benchmark that can evaluate intra-sentence discourse properties across a diverse set of NLP tasks.
Disco-Bench consists of 9 document-level testsets in the literature domain, which contain rich discourse phenomena.
For linguistic analysis, we also design a diagnostic test suite that can examine whether the target models learn discourse knowledge.
arXiv Detail & Related papers (2023-07-16T15:18:25Z) - VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised
Speech Representation Disentanglement for One-shot Voice Conversion [54.29557210925752]
One-shot voice conversion can be effectively achieved by speech representation disentanglement.
We employ vector quantization (VQ) for content encoding and introduce mutual information (MI) as the correlation metric during training.
Experimental results reflect the superiority of the proposed method in learning effective disentangled speech representations.
arXiv Detail & Related papers (2021-06-18T13:50:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.