Sit Back and Relax: Learning to Drive Incrementally in All Weather
Conditions
- URL: http://arxiv.org/abs/2305.18953v1
- Date: Tue, 30 May 2023 11:37:41 GMT
- Title: Sit Back and Relax: Learning to Drive Incrementally in All Weather
Conditions
- Authors: Stefan Leitner, M. Jehanzeb Mirza, Wei Lin, Jakub Micorek, Marc
Masana, Mateusz Kozinski, Horst Possegger, Horst Bischof
- Abstract summary: In autonomous driving scenarios, current object detection models show strong performance when tested in clear weather.
We propose Domain-Incremental Learning through Activation Matching (DILAM) to adapt only the affine parameters of a clear weather pre-trained network to different weather conditions.
Our memory bank is extremely lightweight, since affine parameters account for less than 2% of a typical object detector.
- Score: 16.014293219912
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In autonomous driving scenarios, current object detection models show strong
performance when tested in clear weather. However, their performance
deteriorates significantly when tested in degrading weather conditions. In
addition, even when adapted to perform robustly in a sequence of different
weather conditions, they are often unable to perform well in all of them and
suffer from catastrophic forgetting. To efficiently mitigate forgetting, we
propose Domain-Incremental Learning through Activation Matching (DILAM), which
employs unsupervised feature alignment to adapt only the affine parameters of a
clear weather pre-trained network to different weather conditions. We propose
to store these affine parameters as a memory bank for each weather condition
and plug-in their weather-specific parameters during driving (i.e. test time)
when the respective weather conditions are encountered. Our memory bank is
extremely lightweight, since affine parameters account for less than 2% of a
typical object detector. Furthermore, contrary to previous domain-incremental
learning approaches, we do not require the weather label when testing and
propose to automatically infer the weather condition by a majority voting
linear classifier.
Related papers
- Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - Genuine Knowledge from Practice: Diffusion Test-Time Adaptation for
Video Adverse Weather Removal [53.15046196592023]
We introduce test-time adaptation into adverse weather removal in videos.
We propose the first framework that integrates test-time adaptation into the iterative diffusion reverse process.
arXiv Detail & Related papers (2024-03-12T14:21:30Z) - DA-RAW: Domain Adaptive Object Detection for Real-World Adverse Weather Conditions [2.048226951354646]
We present an unsupervised domain adaptation framework for object detection in adverse weather conditions.
Our method resolves the style gap by concentrating on style-related information of high-level features.
Using self-supervised contrastive learning, our framework then reduces the weather gap and acquires instance features that are robust to weather corruption.
arXiv Detail & Related papers (2023-09-15T04:37:28Z) - Robust Monocular Depth Estimation under Challenging Conditions [81.57697198031975]
State-of-the-art monocular depth estimation approaches are highly unreliable under challenging illumination and weather conditions.
We tackle these safety-critical issues with md4all: a simple and effective solution that works reliably under both adverse and ideal conditions.
arXiv Detail & Related papers (2023-08-18T17:59:01Z) - An Efficient Domain-Incremental Learning Approach to Drive in All
Weather Conditions [8.436505917796174]
Deep neural networks enable impressive visual perception performance for autonomous driving.
They are prone to forgetting previously learned information when adapting to different weather conditions.
We propose DISC -- Domain Incremental through Statistical Correction -- a simple zero-forgetting approach which can incrementally learn new tasks.
arXiv Detail & Related papers (2022-04-19T11:39:20Z) - Vision in adverse weather: Augmentation using CycleGANs with various
object detectors for robust perception in autonomous racing [70.16043883381677]
In autonomous racing, the weather can change abruptly, causing significant degradation in perception, resulting in ineffective manoeuvres.
In order to improve detection in adverse weather, deep-learning-based models typically require extensive datasets captured in such conditions.
We introduce an approach of using synthesised adverse condition datasets in autonomous racing (generated using CycleGAN) to improve the performance of four out of five state-of-the-art detectors.
arXiv Detail & Related papers (2022-01-10T10:02:40Z) - TransWeather: Transformer-based Restoration of Images Degraded by
Adverse Weather Conditions [77.20136060506906]
We propose TransWeather, a transformer-based end-to-end model with just a single encoder and a decoder.
TransWeather achieves significant improvements across multiple test datasets over both All-in-One network.
It is validated on real world test images and found to be more effective than previous methods.
arXiv Detail & Related papers (2021-11-29T18:57:09Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Robustness of Object Detectors in Degrading Weather Conditions [7.91378990016322]
State-of-the-art object detection systems for autonomous driving achieve promising results in clear weather conditions.
These systems need to work in degrading weather conditions, such as rain, fog and snow.
Most approaches evaluate only on the KITTI dataset, which consists only of clear weather scenes.
arXiv Detail & Related papers (2021-06-16T13:56:07Z) - Smart Weather Forecasting Using Machine Learning:A Case Study in
Tennessee [2.9477900773805032]
We present a weather prediction technique that utilizes historical data from multiple weather stations to train simple machine learning models.
The accuracy of the models is good enough to be used alongside the current state-of-the-art techniques.
arXiv Detail & Related papers (2020-08-25T02:41:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.