Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection
- URL: http://arxiv.org/abs/2408.04254v1
- Date: Thu, 8 Aug 2024 06:47:21 GMT
- Title: Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection
- Authors: Dongqi Fu, Yada Zhu, Hanghang Tong, Kommy Weldemariam, Onkar Bhardwaj, Jingrui He,
- Abstract summary: We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
- Score: 67.40407388422514
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Understanding the causal interaction of time series variables can contribute to time series data analysis for many real-world applications, such as climate forecasting and extreme weather alerts. However, causal relationships are difficult to be fully observed in real-world complex settings, such as spatial-temporal data from deployed sensor networks. Therefore, to capture fine-grained causal relations among spatial-temporal variables for further a more accurate and reliable time series analysis, we first design a conceptual fine-grained causal model named TBN Granger Causality, which adds time-respecting Bayesian Networks to the previous time-lagged Neural Granger Causality to offset the instantaneous effects. Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner to help forecast time series data and detect possible anomalies during the forecast. For evaluations, besides the causality discovery benchmark Lorenz-96, we also test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
Related papers
- Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data [7.559331742876793]
This study introduces a hybrid model combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks to predict historical temperature data.
CNNs are utilized for spatial feature extraction, while LSTMs handle temporal dependencies, resulting in significantly improved prediction accuracy and stability.
arXiv Detail & Related papers (2024-10-19T03:38:53Z) - Learning Graph Structures and Uncertainty for Accurate and Calibrated Time-series Forecasting [65.40983982856056]
We introduce STOIC, that leverages correlations between time-series to learn underlying structure between time-series and to provide well-calibrated and accurate forecasts.
Over a wide-range of benchmark datasets STOIC provides 16% more accurate and better-calibrated forecasts.
arXiv Detail & Related papers (2024-07-02T20:14:32Z) - How far are today's time-series models from real-world weather forecasting applications? [22.68937280154092]
WEATHER-5K is a comprehensive collection of observational weather data that better reflects real-world scenarios.
It enables a better training of models and a more accurate assessment of the real-world forecasting capabilities of TSF models.
We provide researchers with a clear assessment of the gap between academic TSF models and real-world weather forecasting applications.
arXiv Detail & Related papers (2024-06-20T15:18:52Z) - VN-Net: Vision-Numerical Fusion Graph Convolutional Network for Sparse Spatio-Temporal Meteorological Forecasting [12.737085738169164]
VN-Net is the first attempt to introduce GCN method to utilize multi-modal data for better handling sparse-temporal meteorological forecasting.
VN-Net outperforms state-of-the-art by a significant margin on mean absolute error (MAE) and root mean square error (RMSE) for temperature, relative humidity, and forecasting.
arXiv Detail & Related papers (2024-01-26T12:41:57Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
We present an AI-based data assimilation model, i.e., Adas, for global weather variables.
We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term.
We are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential.
arXiv Detail & Related papers (2023-12-18T09:05:28Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Precipitation nowcasting with generative diffusion models [0.0]
We study the efficacy of diffusion models in handling the task of precipitation nowcasting.
Our work is conducted in comparison to the performance of well-established U-Net models.
arXiv Detail & Related papers (2023-08-13T09:51:16Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Latent State Inference in a Spatiotemporal Generative Model [3.7525506486107267]
We focus on temperature and weather processes, including wave propagation dynamics, for which we assume that universal causes apply throughout space and time.
A recently introduced DIsed Stemporal graph graph artificial Neural Architecture (DISTANA) is used and enhanced to learn such processes.
We show that DISTANA, when combined with a retrospective latent state inference principle called active tuning, can reliably derive location-respective hidden causal factors.
arXiv Detail & Related papers (2020-09-21T12:59:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.