論文の概要: Hybrid Driven Learning for Channel Estimation in Intelligent Reflecting
Surface Aided Millimeter Wave Communications
- arxiv url: http://arxiv.org/abs/2305.19005v1
- Date: Tue, 30 May 2023 13:03:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 16:23:50.525902
- Title: Hybrid Driven Learning for Channel Estimation in Intelligent Reflecting
Surface Aided Millimeter Wave Communications
- Title(参考訳): インテリジェント反射型ミリ波通信におけるチャネル推定のためのハイブリッド駆動学習
- Authors: Shuntian Zheng, Sheng Wu, Chunxiao Jiang, Wei Zhang, Xiaojun Jing
- Abstract要約: ミリ波(mmWave)およびテラヘルツ(THz)システムにおいて、カバー範囲とキャパシティ向上の両方を達成するために、インテリジェント反射面(IRS)が提案されている。
ハイブリッドアーキテクチャを用いたマルチユーザマルチインプット・シングルアウトプット(MISO)システムにおけるアップリンク広帯域チャネル推定の問題に対処する。
- 参考スコア(独自算出の注目度): 25.311351571810032
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intelligent reflecting surfaces (IRS) have been proposed in millimeter wave
(mmWave) and terahertz (THz) systems to achieve both coverage and capacity
enhancement, where the design of hybrid precoders, combiners, and the IRS
typically relies on channel state information. In this paper, we address the
problem of uplink wideband channel estimation for IRS aided multiuser
multiple-input single-output (MISO) systems with hybrid architectures.
Combining the structure of model driven and data driven deep learning
approaches, a hybrid driven learning architecture is devised for joint
estimation and learning the properties of the channels. For a passive IRS aided
system, we propose a residual learned approximate message passing as a model
driven network. A denoising and attention network in the data driven network is
used to jointly learn spatial and frequency features. Furthermore, we design a
flexible hybrid driven network in a hybrid passive and active IRS aided system.
Specifically, the depthwise separable convolution is applied to the data driven
network, leading to less network complexity and fewer parameters at the IRS
side. Numerical results indicate that in both systems, the proposed hybrid
driven channel estimation methods significantly outperform existing deep
learning-based schemes and effectively reduce the pilot overhead by about 60%
in IRS aided systems.
- Abstract(参考訳): ミリ波(mmWave)とテラヘルツ(THz)システムにおいて、ハイブリッドプリコーダ、コンバインダ、IRSの設計がチャネル状態情報に依存している場合のカバレッジとキャパシティの向上を実現するために、インテリジェント反射面(IRS)が提案されている。
本稿では,ハイブリッドアーキテクチャを用いたマルチユーザマルチインプット単一出力(MISO)システムにおけるアップリンク広帯域チャネル推定の問題に対処する。
モデル駆動型とデータ駆動型ディープラーニングのアプローチの構造を組み合わせることで、チャネル特性の同時推定と学習のためにハイブリッド駆動型学習アーキテクチャが考案される。
受動IRS支援システムにおいて、モデル駆動型ネットワークとして残差学習した近似メッセージパッシングを提案する。
空間的・周波数的特徴を共同学習するために、データ駆動ネットワーク内の分断・注意ネットワークを用いる。
さらに,irsとirsのハイブリッドシステムにおいて,柔軟なハイブリッド駆動ネットワークを設計する。
具体的には、深度的に分離可能な畳み込みがデータ駆動ネットワークに適用され、ネットワークの複雑さが小さくなり、IRS側のパラメータも少なくなる。
数値計算の結果,両システムにおいて提案するハイブリッド型チャネル推定手法は,既存のディープラーニング方式を著しく上回っており,irs支援システムのパイロットオーバヘッドを約60%削減できることがわかった。
関連論文リスト
- Machine Learning-Based Channel Prediction for RIS-assisted MIMO Systems With Channel Aging [11.867884158309373]
再構成可能なインテリジェントサーフェス (RIS) は,第6世代 (6G) および通信システムを越えた性能向上のための有望な技術として登場した。
RISの受動的性質とその多数の反射要素は、チャネル推定プロセスに困難をもたらす。
本稿では、自己回帰(AR)予測器と統合された畳み込みニューラルネットワーク(CNN)に基づく、RIS支援マルチインプットマルチアウトプット(MIMO)システムのための拡張チャネル推定フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-09T19:45:49Z) - Extreme Learning Machine-based Channel Estimation in IRS-Assisted Multi-User ISAC System [32.74137740936128]
本稿では、IRS支援マルチユーザISACシステムに対して、初めて実用的なチャネル推定手法を提案する。
全体推定問題をサブ1に転送する2段階の手法を提案する。
ISAC BSとダウンリンクユーザの低コスト要求を考慮して、提案した2段階のアプローチは、効率的なニューラルネットワーク(NN)フレームワークによって実現されている。
論文 参考訳(メタデータ) (2024-01-29T14:15:11Z) - Deep Learning-Based Rate-Splitting Multiple Access for Reconfigurable
Intelligent Surface-Aided Tera-Hertz Massive MIMO [56.022764337221325]
再構成可能なインテリジェントサーフェス(RIS)は,Tera-Hertz大規模マルチインプットマルチアウトプット(MIMO)通信システムのサービスカバレッジを大幅に向上させることができる。
しかし、パイロットとフィードバック信号のオーバーヘッドが限定された正確な高次元チャネル状態情報(CSI)を得ることは困難である。
本稿では、RIS支援Tera-Hertzマルチユーザアクセスシステムのための、ディープラーニング(DL)に基づくレート分割多重アクセス方式を提案する。
論文 参考訳(メタデータ) (2022-09-18T03:07:37Z) - Federated Channel Learning for Intelligent Reflecting Surfaces With
Fewer Pilot Signals [25.592568132720157]
本稿では,IRS支援無線システムにおける直接チャネルとカスケードチャネルの両方を共同で推定するフェデレートラーニング(FL)フレームワークを提案する。
提案手法ではパイロット信号が約60%少なくなり,CLの12倍の伝送オーバヘッドが得られた。
論文 参考訳(メタデータ) (2022-05-06T13:23:39Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
そこでは,観測観測のために,既知の基地局とRIS位相制御行列を併用したアップリンクチャネル推定手法を提案する。
推定性能を向上し, トレーニングオーバーヘッドを低減するため, 深部展開法において, mmWaveチャネルの固有チャネル幅を生かした。
提案したディープ・アンフォールディング・ネットワーク・アーキテクチャは,トレーニングオーバーヘッドが比較的小さく,オンライン計算の複雑さも比較的小さく,最小二乗法(LS)法より優れていることが確認された。
論文 参考訳(メタデータ) (2021-07-27T06:57:56Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
本稿では,ミリ波(mmWave)システムのモデル駆動深層学習(MDDL)に基づくチャネル推定とフィードバック方式を提案する。
無線周波数(RF)鎖の限られた数から高次元チャネルを推定するためのアップリンクパイロットオーバーヘッドを低減するために,位相シフトネットワークとチャネル推定器を自動エンコーダとして共同で訓練することを提案する。
MDDLに基づくチャネル推定とフィードバック方式は,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-22T13:34:53Z) - Wireless Sensing With Deep Spectrogram Network and Primitive Based
Autoregressive Hybrid Channel Model [20.670058030653458]
無線センシングに基づくヒューマンモーション認識(hmr)は,シーン理解のための低コスト手法である。
現在のHMRシステムは、レーダー信号を分類するためにサポートベクターマシン(SVM)と畳み込みニューラルネットワーク(CNN)を採用している。
本稿では,残差マッピング技術を利用してHMR性能を向上させるディープ・スペクトログラム・ネットワーク(DSN)を提案する。
論文 参考訳(メタデータ) (2021-04-21T06:33:01Z) - Phase Configuration Learning in Wireless Networks with Multiple
Reconfigurable Intelligent Surfaces [50.622375361505824]
RIS(Reconfigurable Intelligent Surfaces)は、電磁波伝搬の動的制御を提供する、高度にスケーラブルな技術である。
RISを内蔵した無線通信における大きな課題の1つは、複数のRISの低オーバーヘッドダイナミックな構成である。
RISの位相構成に対する低複雑さ教師あり学習手法を考案する。
論文 参考訳(メタデータ) (2020-10-09T05:35:27Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
本稿では,mmWave IRSシステムに対するディープデノイングニューラルネットワークを用いた圧縮チャネル推定法を提案する。
我々はまず、受信チェーンをほとんど使わず、アップリンクのユーザ-IRSチャネルを推定するハイブリッド・パッシブ/アクティブIRSアーキテクチャを導入する。
完全チャネル行列は、圧縮センシングに基づいて限られた測定値から再構成することができる。
論文 参考訳(メタデータ) (2020-06-03T12:18:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。