Language-Conditioned Imitation Learning with Base Skill Priors under Unstructured Data
- URL: http://arxiv.org/abs/2305.19075v5
- Date: Thu, 12 Sep 2024 08:14:29 GMT
- Title: Language-Conditioned Imitation Learning with Base Skill Priors under Unstructured Data
- Authors: Hongkuan Zhou, Zhenshan Bing, Xiangtong Yao, Xiaojie Su, Chenguang Yang, Kai Huang, Alois Knoll,
- Abstract summary: Language-conditioned robot manipulation aims to develop robots capable of understanding and executing complex tasks.
We propose a general-purpose, language-conditioned approach that combines base skill priors and imitation learning under unstructured data.
We assess our model's performance in both simulated and real-world environments using a zero-shot setting.
- Score: 26.004807291215258
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing interest in language-conditioned robot manipulation aims to develop robots capable of understanding and executing complex tasks, with the objective of enabling robots to interpret language commands and manipulate objects accordingly. While language-conditioned approaches demonstrate impressive capabilities for addressing tasks in familiar environments, they encounter limitations in adapting to unfamiliar environment settings. In this study, we propose a general-purpose, language-conditioned approach that combines base skill priors and imitation learning under unstructured data to enhance the algorithm's generalization in adapting to unfamiliar environments. We assess our model's performance in both simulated and real-world environments using a zero-shot setting. In the simulated environment, the proposed approach surpasses previously reported scores for CALVIN benchmark, especially in the challenging Zero-Shot Multi-Environment setting. The average completed task length, indicating the average number of tasks the agent can continuously complete, improves more than 2.5 times compared to the state-of-the-art method HULC. In addition, we conduct a zero-shot evaluation of our policy in a real-world setting, following training exclusively in simulated environments without additional specific adaptations. In this evaluation, we set up ten tasks and achieved an average 30% improvement in our approach compared to the current state-of-the-art approach, demonstrating a high generalization capability in both simulated environments and the real world. For further details, including access to our code and videos, please refer to https://hk-zh.github.io/spil/
Related papers
- Flex: End-to-End Text-Instructed Visual Navigation with Foundation Models [59.892436892964376]
We investigate the minimal data requirements and architectural adaptations necessary to achieve robust closed-loop performance with vision-based control policies.
Our findings are synthesized in Flex (Fly-lexically), a framework that uses pre-trained Vision Language Models (VLMs) as frozen patch-wise feature extractors.
We demonstrate the effectiveness of this approach on quadrotor fly-to-target tasks, where agents trained via behavior cloning successfully generalize to real-world scenes.
arXiv Detail & Related papers (2024-10-16T19:59:31Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - Language-guided Robot Grasping: CLIP-based Referring Grasp Synthesis in
Clutter [14.489086924126253]
This work focuses on the task of referring grasp synthesis, which predicts a grasp pose for an object referred through natural language in cluttered scenes.
Existing approaches often employ multi-stage pipelines that first segment the referred object and then propose a suitable grasp, and are evaluated in private datasets or simulators that do not capture the complexity of natural indoor scenes.
We propose a novel end-to-end model (CROG) that leverages the visual grounding capabilities of CLIP to learn synthesis grasp directly from image-text pairs.
arXiv Detail & Related papers (2023-11-09T22:55:10Z) - CorNav: Autonomous Agent with Self-Corrected Planning for Zero-Shot Vision-and-Language Navigation [73.78984332354636]
CorNav is a novel zero-shot framework for vision-and-language navigation.
It incorporates environmental feedback for refining future plans and adjusting its actions.
It consistently outperforms all baselines in a zero-shot multi-task setting.
arXiv Detail & Related papers (2023-06-17T11:44:04Z) - ARNOLD: A Benchmark for Language-Grounded Task Learning With Continuous
States in Realistic 3D Scenes [72.83187997344406]
ARNOLD is a benchmark that evaluates language-grounded task learning with continuous states in realistic 3D scenes.
ARNOLD is comprised of 8 language-conditioned tasks that involve understanding object states and learning policies for continuous goals.
arXiv Detail & Related papers (2023-04-09T21:42:57Z) - Grounding Language with Visual Affordances over Unstructured Data [26.92329260907805]
We propose a novel approach to efficiently learn language-conditioned robot skills from unstructured, offline and reset-free data.
We exploit a self-supervised visuo-lingual affordance model, which requires as little as 1% of the total data with language.
We find that our method is capable of completing long-horizon, multi-tier tasks in the real world, while requiring an order of magnitude less data than previous approaches.
arXiv Detail & Related papers (2022-10-04T21:16:48Z) - Visual-Language Navigation Pretraining via Prompt-based Environmental
Self-exploration [83.96729205383501]
We introduce prompt-based learning to achieve fast adaptation for language embeddings.
Our model can adapt to diverse vision-language navigation tasks, including VLN and REVERIE.
arXiv Detail & Related papers (2022-03-08T11:01:24Z) - Reactive Long Horizon Task Execution via Visual Skill and Precondition
Models [59.76233967614774]
We describe an approach for sim-to-real training that can accomplish unseen robotic tasks using models learned in simulation to ground components of a simple task planner.
We show an increase in success rate from 91.6% to 98% in simulation and from 10% to 80% success rate in the real-world as compared with naive baselines.
arXiv Detail & Related papers (2020-11-17T15:24:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.