TrueDeep: A systematic approach of crack detection with less data
- URL: http://arxiv.org/abs/2305.19088v1
- Date: Tue, 30 May 2023 14:51:58 GMT
- Title: TrueDeep: A systematic approach of crack detection with less data
- Authors: Ram Krishna Pandey and Akshit Achara
- Abstract summary: We show that by incorporating domain knowledge along with deep learning architectures, we can achieve similar performance with less data.
Our algorithms, developed with 23% of the overall data, have a similar performance on the test data and significantly better performance on multiple blind datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Supervised and semi-supervised semantic segmentation algorithms require
significant amount of annotated data to achieve a good performance. In many
situations, the data is either not available or the annotation is expensive.
The objective of this work is to show that by incorporating domain knowledge
along with deep learning architectures, we can achieve similar performance with
less data. We have used publicly available crack segmentation datasets and
shown that selecting the input images using knowledge can significantly boost
the performance of deep-learning based architectures. Our proposed approaches
have many fold advantages such as low annotation and training cost, and less
energy consumption. We have measured the performance of our algorithm
quantitatively in terms of mean intersection over union (mIoU) and F score. Our
algorithms, developed with 23% of the overall data; have a similar performance
on the test data and significantly better performance on multiple blind
datasets.
Related papers
- A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data.
We develop a novel factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions.
arXiv Detail & Related papers (2023-12-17T04:41:07Z) - Semantic Segmentation with Active Semi-Supervised Representation
Learning [23.79742108127707]
We train an effective semantic segmentation algorithm with significantly lesser labeled data.
We extend the prior state-of-the-art S4AL algorithm by replacing its mean teacher approach for semi-supervised learning with a self-training approach.
We evaluate our method on CamVid and CityScapes datasets, the de-facto standards for active learning for semantic segmentation.
arXiv Detail & Related papers (2022-10-16T00:21:43Z) - Mitigating Representation Bias in Action Recognition: Algorithms and
Benchmarks [76.35271072704384]
Deep learning models perform poorly when applied to videos with rare scenes or objects.
We tackle this problem from two different angles: algorithm and dataset.
We show that the debiased representation can generalize better when transferred to other datasets and tasks.
arXiv Detail & Related papers (2022-09-20T00:30:35Z) - Bi-level Alignment for Cross-Domain Crowd Counting [113.78303285148041]
Current methods rely on external data for training an auxiliary task or apply an expensive coarse-to-fine estimation.
We develop a new adversarial learning based method, which is simple and efficient to apply.
We evaluate our approach on five real-world crowd counting benchmarks, where we outperform existing approaches by a large margin.
arXiv Detail & Related papers (2022-05-12T02:23:25Z) - Dominant Set-based Active Learning for Text Classification and its
Application to Online Social Media [0.0]
We present a novel pool-based active learning method for the training of large unlabeled corpus with minimum annotation cost.
Our proposed method does not have any parameters to be tuned, making it dataset-independent.
Our method achieves a higher performance in comparison to the state-of-the-art active learning strategies.
arXiv Detail & Related papers (2022-01-28T19:19:03Z) - CvS: Classification via Segmentation For Small Datasets [52.821178654631254]
This paper presents CvS, a cost-effective classifier for small datasets that derives the classification labels from predicting the segmentation maps.
We evaluate the effectiveness of our framework on diverse problems showing that CvS is able to achieve much higher classification results compared to previous methods when given only a handful of examples.
arXiv Detail & Related papers (2021-10-29T18:41:15Z) - Revisiting Contrastive Methods for Unsupervised Learning of Visual
Representations [78.12377360145078]
Contrastive self-supervised learning has outperformed supervised pretraining on many downstream tasks like segmentation and object detection.
In this paper, we first study how biases in the dataset affect existing methods.
We show that current contrastive approaches work surprisingly well across: (i) object- versus scene-centric, (ii) uniform versus long-tailed and (iii) general versus domain-specific datasets.
arXiv Detail & Related papers (2021-06-10T17:59:13Z) - Online Descriptor Enhancement via Self-Labelling Triplets for Visual
Data Association [28.03285334702022]
We propose a self-supervised method for incrementally refining visual descriptors to improve performance in the task of object-level visual data association.
Our method optimize deep descriptor generators online, by continuously training a widely available image classification network pre-trained with domain-independent data.
We show that our approach surpasses other visual data-association methods applied to a tracking-by-detection task, and show that it provides better performance-gains when compared to other methods that attempt to adapt to observed information.
arXiv Detail & Related papers (2020-11-06T17:42:04Z) - Learning Robust Feature Representations for Scene Text Detection [0.0]
We present a network architecture derived from the loss to maximize conditional log-likelihood.
By extending the layer of latent variables to multiple layers, the network is able to learn robust features on scale.
In experiments, the proposed algorithm significantly outperforms state-of-the-art methods in terms of both recall and precision.
arXiv Detail & Related papers (2020-05-26T01:06:47Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.