論文の概要: Compression with Bayesian Implicit Neural Representations
- arxiv url: http://arxiv.org/abs/2305.19185v5
- Date: Sun, 29 Oct 2023 09:38:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 21:50:00.798169
- Title: Compression with Bayesian Implicit Neural Representations
- Title(参考訳): Bayesian Implicit Neural Representation による圧縮
- Authors: Zongyu Guo, Gergely Flamich, Jiajun He, Zhibo Chen, Jos\'e Miguel
Hern\'andez-Lobato
- Abstract要約: 本稿では,データに変分ニューラルネットワークをオーバーフィッティングし,相対エントロピー符号化を用いて近似後重みサンプルを圧縮し,量子化やエントロピー符号化を行う。
実験により,本手法は単純さを維持しつつ,画像および音声の圧縮に強い性能を発揮することが示された。
- 参考スコア(独自算出の注目度): 16.593537431810237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many common types of data can be represented as functions that map
coordinates to signal values, such as pixel locations to RGB values in the case
of an image. Based on this view, data can be compressed by overfitting a
compact neural network to its functional representation and then encoding the
network weights. However, most current solutions for this are inefficient, as
quantization to low-bit precision substantially degrades the reconstruction
quality. To address this issue, we propose overfitting variational Bayesian
neural networks to the data and compressing an approximate posterior weight
sample using relative entropy coding instead of quantizing and entropy coding
it. This strategy enables direct optimization of the rate-distortion
performance by minimizing the $\beta$-ELBO, and target different
rate-distortion trade-offs for a given network architecture by adjusting
$\beta$. Moreover, we introduce an iterative algorithm for learning prior
weight distributions and employ a progressive refinement process for the
variational posterior that significantly enhances performance. Experiments show
that our method achieves strong performance on image and audio compression
while retaining simplicity.
- Abstract(参考訳): 多くの一般的なデータ型は、ピクセルの位置や画像の場合のrgb値など、座標を信号値にマッピングする関数として表現することができる。
このビューに基づいて、コンパクトニューラルネットワークを機能表現に過度に適合させ、ネットワーク重みを符号化することで、データを圧縮することができる。
しかし、現在のソリューションのほとんどは非効率であり、低ビット精度への量子化は再構成品質を実質的に低下させる。
この問題に対処するために、変分ベイズニューラルネットワークをデータに適用し、量子化やエントロピー符号化の代わりに相対エントロピー符号化を用いて近似後重みサンプルを圧縮する手法を提案する。
この戦略により、$\beta$-elboを最小化し、$\beta$を調整して所定のネットワークアーキテクチャの異なるレートディストリクトトレードオフを目標とするレートディストリクト性能の直接最適化が可能になる。
さらに, 先行体重分布を学習するための反復アルゴリズムを導入し, 変動後方の漸進的改良プロセスを採用し, 性能を著しく向上させる。
実験により,本手法は単純さを維持しつつ,画像および音声の圧縮に強い性能を発揮することが示された。
関連論文リスト
- Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
本研究は、最適な視覚的忠実度のために設計された強化されたニューラル圧縮手法を提案する。
我々は,洗練されたセマンティック・アンサンブル・ロス,シャルボニエ・ロス,知覚的損失,スタイル・ロス,非バイナリ・ディバイザ・ロスを組み込んだモデルを構築した。
実験により,本手法は神経画像圧縮の統計的忠実度を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-01-25T08:11:27Z) - Lossy Image Compression with Conditional Diffusion Models [25.158390422252097]
本稿では,拡散生成モデルを用いた画像圧縮のエンドツーエンド最適化について概説する。
VAEベースのニューラル圧縮とは対照的に、(平均)デコーダは決定論的ニューラルネットワークであり、私たちのデコーダは条件付き拡散モデルである。
提案手法では,GANモデルよりもFIDスコアが強く,VAEモデルとの競合性能も高い。
論文 参考訳(メタデータ) (2022-09-14T21:53:27Z) - Reducing The Amortization Gap of Entropy Bottleneck In End-to-End Image
Compression [2.1485350418225244]
エンド・ツー・エンドのディープ・トレーニング可能なモデルは、ビデオや画像の従来の手作り圧縮技術の性能をほぼ上回っている。
本稿では,このアモート化ギャップを小さなコストで低減する,シンプルで効率的なインスタンスベースのパラメータ化手法を提案する。
論文 参考訳(メタデータ) (2022-09-02T11:43:45Z) - Estimating the Resize Parameter in End-to-end Learned Image Compression [50.20567320015102]
本稿では,最近の画像圧縮モデルの速度歪みトレードオフをさらに改善する検索自由化フレームワークについて述べる。
提案手法により,Bjontegaard-Deltaレート(BD-rate)を最大10%向上させることができる。
論文 参考訳(メタデータ) (2022-04-26T01:35:02Z) - Reducing Redundancy in the Bottleneck Representation of the Autoencoders [98.78384185493624]
オートエンコーダは教師なしニューラルネットワークの一種であり、様々なタスクを解くのに使用できる。
本稿では,ボトルネック表現における特徴冗長性を明示的に罰する手法を提案する。
我々は,3つの異なるデータセットを用いた次元削減,MNISTデータセットを用いた画像圧縮,ファッションMNISTを用いた画像デノナイズという,さまざまなタスクにまたがってアプローチを検証した。
論文 参考訳(メタデータ) (2022-02-09T18:48:02Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Inlicit Neural Representations (INRs) は、様々なデータ型の新規かつ効果的な表現として注目されている。
量子化、量子化を考慮した再学習、エントロピー符号化を含むINRに基づく最初の包括的圧縮パイプラインを提案する。
我々は、INRによるソース圧縮に対する我々のアプローチが、同様の以前の作業よりも大幅に優れていることに気付きました。
論文 参考訳(メタデータ) (2021-12-08T13:02:53Z) - Rate Distortion Characteristic Modeling for Neural Image Compression [59.25700168404325]
エンドツーエンドの最適化機能は、ニューラルイメージ圧縮(NIC)の優れた損失圧縮性能を提供する。
異なるモデルは、R-D空間の異なる点に到達するために訓練される必要がある。
深層ネットワークと統計モデルを用いてNICのR-D挙動を記述するために,本質的な数学的関数の定式化に努めている。
論文 参考訳(メタデータ) (2021-06-24T12:23:05Z) - Tensor Reordering for CNN Compression [7.228285747845778]
畳み込みニューラルネットワーク(CNN)フィルタにおけるパラメータ冗長性は,スペクトル領域におけるプルーニングによって効果的に低減できることを示す。
提案手法は事前学習したCNNに対して適用され,最小限の微調整により元のモデル性能を回復できることを示す。
論文 参考訳(メタデータ) (2020-10-22T23:45:34Z) - Perceptually Optimizing Deep Image Compression [53.705543593594285]
平均二乗誤差(MSE)と$ell_p$ノルムは、ニューラルネットワークの損失の測定で大きく支配されている。
本稿では,定量的知覚モデルに対して,画像解析ネットワークを最適化するための異なるプロキシ手法を提案する。
論文 参考訳(メタデータ) (2020-07-03T14:33:28Z) - Mixed-Precision Quantized Neural Network with Progressively Decreasing
Bitwidth For Image Classification and Object Detection [21.48875255723581]
ビット幅が徐々に増大する混合精度量子化ニューラルネットワークを提案し,精度と圧縮のトレードオフを改善する。
典型的なネットワークアーキテクチャとベンチマークデータセットの実験は、提案手法がより良い結果または同等の結果が得られることを示した。
論文 参考訳(メタデータ) (2019-12-29T14:11:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。