論文の概要: Gradient descent in matrix factorization: Understanding large initialization
- arxiv url: http://arxiv.org/abs/2305.19206v2
- Date: Fri, 31 May 2024 20:59:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 21:29:55.910941
- Title: Gradient descent in matrix factorization: Understanding large initialization
- Title(参考訳): 行列分解における勾配降下--大きな初期化を理解する
- Authors: Hengchao Chen, Xin Chen, Mohamad Elmasri, Qiang Sun,
- Abstract要約: このフレームワークは信号対雑音比の概念と帰納的議論に基づいている。
その結果、GDにおける暗黙的な漸進的な学習現象が明らかとなり、大きなシナリオにおけるそのパフォーマンスをより深く理解することが可能になる。
- 参考スコア(独自算出の注目度): 6.378022003282206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gradient Descent (GD) has been proven effective in solving various matrix factorization problems. However, its optimization behavior with large initial values remains less understood. To address this gap, this paper presents a novel theoretical framework for examining the convergence trajectory of GD with a large initialization. The framework is grounded in signal-to-noise ratio concepts and inductive arguments. The results uncover an implicit incremental learning phenomenon in GD and offer a deeper understanding of its performance in large initialization scenarios.
- Abstract(参考訳): GD(Gradient Descent)は様々な行列因数分解問題を解くのに有効であることが証明されている。
しかし、初期値が大きい最適化挙動はいまだ理解されていない。
そこで本研究では,GDの収束軌道を大規模初期化して検討するための理論的枠組みを提案する。
このフレームワークは信号対雑音比の概念と帰納的議論に基づいている。
その結果、GDにおける暗黙的な漸進的な学習現象を明らかにし、大規模な初期化シナリオにおけるその性能についてより深い理解を提供する。
関連論文リスト
- On the Crucial Role of Initialization for Matrix Factorization [40.834791383134416]
この研究は古典的低ランク行列分解問題を再考し、整合率の形成における初期化の重要な役割を明らかにする。
我々はNystrom NyGDを対称非対称行列分解タスクに導入し、ローランクアダプタ(LoRA)に拡張する。
提案手法は,大規模言語および拡散モデルにおいて,1Bから7Bパラメータに至るまで,様々なダウンストリームおよびモデルスケールで優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-24T17:58:21Z) - Implicit regularization in AI meets generalized hardness of
approximation in optimization -- Sharp results for diagonal linear networks [0.0]
直交線形ネットワークの勾配流による暗黙の正規化について, 鋭い結果を示す。
これを近似の一般化硬度における相転移現象と関連付ける。
結果の非シャープ性は、基礎追従最適化問題に対して、GHA現象が起こらないことを意味する。
論文 参考訳(メタデータ) (2023-07-13T13:27:51Z) - Understanding Incremental Learning of Gradient Descent: A Fine-grained
Analysis of Matrix Sensing [74.2952487120137]
GD(Gradient Descent)は、機械学習モデルにおいて、良い一般化に対する暗黙のバイアスをもたらすと考えられている。
本稿では,行列センシング問題に対するGDのダイナミクスを詳細に解析する。
論文 参考訳(メタデータ) (2023-01-27T02:30:51Z) - Rank-1 Matrix Completion with Gradient Descent and Small Random
Initialization [15.127728811011245]
我々は,GDの暗黙的正規化が分析において重要な役割を担っていることを示す。
我々は、手頃な分析において暗黙の正規化GDが重要な役割を担っていることを観察する。
論文 参考訳(メタデータ) (2022-12-19T12:05:37Z) - Stability and Generalization Analysis of Gradient Methods for Shallow
Neural Networks [59.142826407441106]
本稿では,アルゴリズム安定性の概念を活用して,浅層ニューラルネットワーク(SNN)の一般化挙動について検討する。
我々は、SNNを訓練するために勾配降下(GD)と勾配降下(SGD)を考慮する。
論文 参考訳(メタデータ) (2022-09-19T18:48:00Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - On the Implicit Bias of Initialization Shape: Beyond Infinitesimal
Mirror Descent [55.96478231566129]
学習モデルを決定する上で,相対スケールが重要な役割を果たすことを示す。
勾配流の誘導バイアスを導出する手法を開発した。
論文 参考訳(メタデータ) (2021-02-19T07:10:48Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
ヘッセン行列のノルムを近似し, 制御することにより, 層間における重みのグローバルな曲率を厳密に推定する。
Word2Vec と MNIST/CIFAR 画像分類タスクの実験により,Hessian ノルムの追跡が診断ツールとして有用であることが確認された。
論文 参考訳(メタデータ) (2020-04-20T18:12:56Z) - Provable Benefit of Orthogonal Initialization in Optimizing Deep Linear
Networks [39.856439772974454]
グローバル最小値への効率的な収束に必要な幅は, 深さに依存しないことを示す。
この結果から, 非線形ネットワークの初期化による最近の経験的成功について, 動的アイソメトリの原理による説明が得られた。
論文 参考訳(メタデータ) (2020-01-16T18:48:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。