論文の概要: COVID-19 Detection from Exhaled Breath
- arxiv url: http://arxiv.org/abs/2305.19211v2
- Date: Thu, 25 Apr 2024 11:57:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-27 00:17:35.070755
- Title: COVID-19 Detection from Exhaled Breath
- Title(参考訳): 吐き気からのCOVID-19検出
- Authors: Nicolo Bellarmino, Giorgio Bozzini, Riccardo Cantoro, Francesco Castelletti, Michele Castelluzzo, Carla Ciricugno, Raffaele Correale, Daniela Dalla Gasperina, Francesco Dentali, Giovanni Poggialini, Piergiorgio Salerno, Giovanni Squillero, Stefano Taborelli,
- Abstract要約: SARS-CoV-2は2019年に発生し、新型コロナウイルスのパンデミックを引き起こした。
本稿では,吐き気のみを利用する,安価で高速で非侵襲的な検知システムを提案する。
簡便な使用にもかかわらず,本システムは従来のポリメラーゼ鎖反応および抗原検査に匹敵する性能を示した。
- 参考スコア(独自算出の注目度): 0.4321423008988813
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The SARS-CoV-2 coronavirus emerged in 2019, causing a COVID-19 pandemic that resulted in 7 million deaths out of 770 million reported cases over the next four years. The global health emergency called for unprecedented efforts to monitor and reduce the rate of infection, pushing the study of new diagnostic methods. In this paper, we introduce a cheap, fast, and non-invasive detection system, which exploits only the exhaled breath. Specifically, provided an air sample, the mass spectra in the 10--351 mass-to-charge range are measured using an original nano-sampling device coupled with a high-precision spectrometer; then, the raw spectra are processed by custom software algorithms; the clean and augmented data are eventually classified using state-of-the-art machine-learning algorithms. An uncontrolled clinical trial was conducted between 2021 and 2022 on some 300 subjects who were concerned about being infected, either due to exhibiting symptoms or having quite recently recovered from illness. Despite the simplicity of use, our system showed a performance comparable to the traditional polymerase-chain-reaction and antigen testing in identifying cases of COVID-19 (that is, 0.95 accuracy, 0.94 recall, 0.96 specificity, and 0.92 F1-score). In light of these outcomes, we think that the proposed system holds the potential for substantial contributions to routine screenings and expedited responses during future epidemics, as it yields results comparable to state-of-the-art methods, providing them in a more rapid and less invasive manner.
- Abstract(参考訳): SARS-CoV-2(SARS-CoV-2)は2019年に発生し、新型コロナウイルスのパンデミックを引き起こし、今後4年間で7億7000万件の感染者のうち700万人が死亡した。
世界保健機関(WHO)は感染率の監視と削減に前例のない取り組みを呼び掛け、新たな診断方法の研究を推し進めた。
本稿では,吐き気のみを利用する,安価で高速で非侵襲的な検知システムを提案する。
具体的には、10〜351質量帯の質量スペクトルを、高精度分光計と組み合わせた元のナノサンプリング装置を用いて測定し、その後、原スペクトルをカスタムソフトウェアアルゴリズムで処理し、クリーンで拡張されたデータを最終的に最先端の機械学習アルゴリズムで分類する。
2021年から2022年の間、症状がみられたり、比較的最近病気から回復したために、感染を心配していた約300人の被験者に対して、コントロールされていない臨床試験が実施された。
簡便な使用にもかかわらず,従来のポリメラーゼ鎖反応と抗原検査に匹敵する性能を示した(精度0.95,リコール0.94,特異0.96,F1スコア0.92)。
これらの結果を踏まえて,本システムでは,より迅速で侵襲的でない方法で,最先端の手法に匹敵する結果が得られるため,今後の感染拡大に伴う定期的なスクリーニングや迅速な対応に多大な貢献が期待できると考えている。
関連論文リスト
- On-Site Precise Screening of SARS-CoV-2 Systems Using a Channel-Wise Attention-Based PLS-1D-CNN Model with Limited Infrared Signatures [14.03608399920969]
本稿では、減衰された全反射-フーリエ変換赤外分光法(ATR-FTIR)と適応的繰り返し再重み付けされたペナル化最小二乗法(AirPLS)前処理アルゴリズムと、チャネルワイドの注意に基づく畳み込みニューラルネットワーク(PLS-1D-CNN)モデルを統合する手法を提案する。
我々のモデルは、最近、呼吸器ウイルスのスペクトル検出の分野で、96.48%の認識スクリーニング精度、96.24%の感度、97.14%の特異性、96.12%のF1スコア、0.99のAUCを達成している。
論文 参考訳(メタデータ) (2024-10-26T09:22:35Z) - Advancing Diagnostic Precision: Leveraging Machine Learning Techniques
for Accurate Detection of Covid-19, Pneumonia, and Tuberculosis in Chest
X-Ray Images [0.0]
新型コロナウイルス、結核(TB)、肺炎などの肺疾患は、依然として深刻な世界的な健康上の問題となっている。
救急医療と科学者は、早期の新型コロナウイルス(COVID-19)の診断に信頼性と正確なアプローチを作成するために、集中的に取り組んでいる。
論文 参考訳(メタデータ) (2023-10-09T18:38:49Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
神経活動を記録して発作を検出するインプラントデバイスは、発作を抑えるために警告を発したり神経刺激を誘発したりするために採用されている。
移植可能な発作検出システムでは、低出力で最先端のオンライン学習アルゴリズムを使用して、神経信号のドリフトに動的に適応することができる。
SOULはTSMCの28nmプロセスで0.1mm2を占め、1.5nJ/分級エネルギー効率を実現した。
論文 参考訳(メタデータ) (2021-10-01T23:01:20Z) - COVID-19 Detection from Chest X-ray Images using Imprinted Weights
Approach [67.05664774727208]
胸部X線撮影は、COVID-19の代替スクリーニング方法です。
コンピュータ支援診断(CAD)は低コストで高速で実現可能であることが証明されている。
この課題に対処するために,インプリント重みという低ショット学習手法を提案する。
論文 参考訳(メタデータ) (2021-05-04T19:01:40Z) - Uncertainty-Aware Semi-supervised Method using Large Unlabelled and
Limited Labeled COVID-19 Data [14.530328267425638]
新型コロナウイルス自動検出のための限定ラベルデータ(SCLLD)を用いた半監視分類を提案する。
提案システムは,近江病院から収集した1万個のCTスキャンを用いて訓練する。
本手法は,ラベル付きトレーニングデータが少ない場合に,Convolutional Neural Network (CNN) の教師付きトレーニングを大幅に上回っている。
論文 参考訳(メタデータ) (2021-02-12T08:20:20Z) - Detecting COVID-19 from Breathing and Coughing Sounds using Deep Neural
Networks [68.8204255655161]
私たちは、Convolutional Neural Networksのアンサンブルを適応させて、スピーカーがCOVID-19に感染しているかどうかを分類します。
最終的には、74.9%のUnweighted Average Recall(UAR)、またはニューラルネットワークをアンサンブルすることで、ROC曲線(AUC)の80.7%を達成する。
論文 参考訳(メタデータ) (2020-12-29T01:14:17Z) - CovMUNET: A Multiple Loss Approach towards Detection of COVID-19 from
Chest X-ray [0.0]
CovMUNETは、CXR画像から新型コロナウイルスの患者を検出するために、多損失ディープニューラルネットワークアプローチである。
提案したニューラルアーキテクチャは、CXR画像の異常の検出にも成功している。
論文 参考訳(メタデータ) (2020-07-28T15:40:13Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z) - Advance Warning Methodologies for COVID-19 using Chest X-Ray Images [20.315204402203783]
コロナウイルス感染症2019(COVID-19)は、2019年12月に初めて発見されて以降、急速に世界的な健康問題となっている。
近年,胸部X線画像から新型コロナウイルスを早期に検出するための機械学習技術が注目されている。
論文 参考訳(メタデータ) (2020-06-07T20:42:25Z) - Dual-Sampling Attention Network for Diagnosis of COVID-19 from Community
Acquired Pneumonia [46.521323145636906]
胸部CT(Central Computed Tomography)において,地域肺炎(CAP)からCOVID-19を自動診断するデュアルサンプリングアテンションネットワークを開発した。
特に,3D畳み込みネットワーク(CNN)を用いた新しいオンラインアテンションモジュールを提案する。
我々のアルゴリズムは、受信機動作特性曲線(AUC)値0.944、精度87.5%、感度86.9%、特異度90.1%、F1スコア82.0%の領域で、COVID-19画像を識別することができる。
論文 参考訳(メタデータ) (2020-05-06T09:56:51Z) - Viral Pneumonia Screening on Chest X-ray Images Using Confidence-Aware
Anomaly Detection [86.81773672627406]
短期間のウイルス性肺炎の集団は、SARS、MERS、最近のCOVID-19のような流行やパンデミックのハービンガーである可能性がある。
胸部X線によるウイルス性肺炎の迅速かつ正確な検出は,大規模スクリーニングや流行予防に有用である。
ウイルス性肺炎はしばしば多彩な原因を持ち、X線画像に顕著な視覚的外観を示す。
論文 参考訳(メタデータ) (2020-03-27T11:32:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。