論文の概要: AlteredAvatar: Stylizing Dynamic 3D Avatars with Fast Style Adaptation
- arxiv url: http://arxiv.org/abs/2305.19245v1
- Date: Tue, 30 May 2023 17:32:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 14:37:05.997877
- Title: AlteredAvatar: Stylizing Dynamic 3D Avatars with Fast Style Adaptation
- Title(参考訳): AlteredAvatar:高速なスタイル適応による動的3Dアバターのスタイリング
- Authors: Thu Nguyen-Phuoc, Gabriel Schwartz, Yuting Ye, Stephen Lombardi, Lei
Xiao
- Abstract要約: AlteredAvatarは、動的3Dアバターを新しいスタイルの任意のテキスト記述に迅速に適応できる手法である。
我々は,AlteredAvatarが,様々な新しいビューや表情の一貫性を維持しつつ,速度,柔軟性,品質のバランスを良好に維持できることを示す。
- 参考スコア(独自算出の注目度): 16.509459925964126
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a method that can quickly adapt dynamic 3D avatars to
arbitrary text descriptions of novel styles. Among existing approaches for
avatar stylization, direct optimization methods can produce excellent results
for arbitrary styles but they are unpleasantly slow. Furthermore, they require
redoing the optimization process from scratch for every new input. Fast
approximation methods using feed-forward networks trained on a large dataset of
style images can generate results for new inputs quickly, but tend not to
generalize well to novel styles and fall short in quality. We therefore
investigate a new approach, AlteredAvatar, that combines those two approaches
using the meta-learning framework. In the inner loop, the model learns to
optimize to match a single target style well; while in the outer loop, the
model learns to stylize efficiently across many styles. After training,
AlteredAvatar learns an initialization that can quickly adapt within a small
number of update steps to a novel style, which can be given using texts, a
reference image, or a combination of both. We show that AlteredAvatar can
achieve a good balance between speed, flexibility and quality, while
maintaining consistency across a wide range of novel views and facial
expressions.
- Abstract(参考訳): 本稿では,動的3Dアバターを新しいスタイルの任意のテキスト記述に迅速に適応させる手法を提案する。
既存のアバタースタイライゼーションのアプローチの中で、直接最適化手法は任意のスタイルに対して優れた結果をもたらすが、不快なほど遅い。
さらに、新しい入力毎に最適化プロセスをスクラッチから再設計する必要がある。
フィードフォワードネットワークを用いた高速な近似法は,新しい入力結果の高速な生成が可能であるが,新しいスタイルを一般化せず,品質が低下する傾向にある。
そこで、メタラーニングフレームワークを用いてこれらの2つのアプローチを組み合わせる新しいアプローチAlteredAvatarについて検討する。
内部ループでは、モデルは単一のターゲットスタイルに合致するように最適化することを学び、外部ループでは、多くのスタイルで効率的にスタイライズすることを学習する。
トレーニング後、modifiedavatarは初期化を学習し、少数の更新ステップで新しいスタイルに素早く適応することができる。
我々は,AlteredAvatarが,様々な新しいビューや表情の一貫性を維持しつつ,速度,柔軟性,品質のバランスを良好に維持できることを示す。
関連論文リスト
- Ada-adapter:Fast Few-shot Style Personlization of Diffusion Model with Pre-trained Image Encoder [57.574544285878794]
Ada-Adapterは拡散モデルの少数ショットスタイルのパーソナライズのための新しいフレームワークである。
提案手法は,単一の参照画像を用いたゼロショット方式の効率的な転送を可能にする。
フラットアートや3Dレンダリング,ロゴデザインなど,さまざまな芸術的スタイルに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-07-08T02:00:17Z) - Style Aligned Image Generation via Shared Attention [61.121465570763085]
本稿では,一連の生成画像間のスタイルアライメントを確立する技術であるStyleAlignedを紹介する。
拡散過程において、最小限の注意共有を生かして、T2Iモデル内の画像間のスタイル整合性を維持する。
本手法は,多種多様なスタイルやテキストのプロンプトにまたがって評価を行い,高品質で忠実であることを示す。
論文 参考訳(メタデータ) (2023-12-04T18:55:35Z) - Instant3D: Fast Text-to-3D with Sparse-View Generation and Large
Reconstruction Model [68.98311213582949]
テキストプロンプトから高品質で多様な3Dアセットをフィードフォワードで生成する新しい手法であるInstant3Dを提案する。
提案手法は,従来の最適化手法よりも2桁早く,20秒以内に高画質の多種多様な3Dアセットを生成できる。
論文 参考訳(メタデータ) (2023-11-10T18:03:44Z) - NeRF-Art: Text-Driven Neural Radiance Fields Stylization [38.3724634394761]
簡単なテキストプロンプトで事前学習したNeRFモデルのスタイルを操作するテキスト誘導型NeRFスタイリング手法であるNeRF-Artを提案する。
本手法は, シングルビューのスタイリゼーション品質とクロスビューの整合性の両方に関して, 有効かつ堅牢であることを示す。
論文 参考訳(メタデータ) (2022-12-15T18:59:58Z) - DiffStyler: Controllable Dual Diffusion for Text-Driven Image
Stylization [66.42741426640633]
DiffStylerは、拡散された結果の内容とスタイルのバランスを制御するための二重拡散処理アーキテクチャである。
本稿では、逆復調処理をベースとしたコンテンツ画像に基づく学習可能なノイズを提案し、そのスタイリング結果により、コンテンツ画像の構造情報をよりよく保存する。
論文 参考訳(メタデータ) (2022-11-19T12:30:44Z) - MultiStyleGAN: Multiple One-shot Image Stylizations using a Single GAN [14.373091259972666]
一般的なシナリオはワンショットスタイリングであり、参照スタイルごとに1つの例しか使用できない。
JoJoGANファインチューンのようなワンショットスタイリングのための最近のアプローチは、単一のスタイル参照画像上に事前訓練されたStyleGAN2ジェネレータである。
単一発電機を微調整することで,複数のスタイルを同時に生成できるMultiStyleGAN法を提案する。
論文 参考訳(メタデータ) (2022-10-08T23:05:29Z) - Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning [84.8813842101747]
Contrastive Arbitrary Style Transfer (CAST) は、新しいスタイル表現学習法である。
本フレームワークは,スタイルコード符号化のための多層スタイルプロジェクタ,スタイル分布を効果的に学習するためのドメイン拡張モジュール,画像スタイル転送のための生成ネットワークという,3つのキーコンポーネントから構成される。
論文 参考訳(メタデータ) (2022-05-19T13:11:24Z) - Stylizing 3D Scene via Implicit Representation and HyperNetwork [34.22448260525455]
簡単な解決策は、既存の新しいビュー合成と画像/ビデオスタイルの転送アプローチを組み合わせることである。
ニューラルレイディアンスフィールド(NeRF)法の高品質な結果にインスパイアされ,新しいビューを所望のスタイルで直接描画するジョイントフレームワークを提案する。
本フレームワークは,ニューラルネットワークを用いた3次元シーンの暗黙的表現と,シーン表現にスタイル情報を転送するハイパーネットワークという2つのコンポーネントから構成される。
論文 参考訳(メタデータ) (2021-05-27T09:11:30Z) - 3DSNet: Unsupervised Shape-to-Shape 3D Style Transfer [66.48720190245616]
本稿では,3次元オブジェクト間のスタイル伝達のための学習に基づくアプローチを提案する。
提案手法は点雲とメッシュの両方で新しい3次元形状を合成することができる。
選択したドメインのマルチモーダルなスタイル分布を暗黙的に学習するために,我々の手法を拡張した。
論文 参考訳(メタデータ) (2020-11-26T16:59:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。