Accurate and Structured Pruning for Efficient Automatic Speech
Recognition
- URL: http://arxiv.org/abs/2305.19549v1
- Date: Wed, 31 May 2023 04:31:16 GMT
- Title: Accurate and Structured Pruning for Efficient Automatic Speech
Recognition
- Authors: Huiqiang Jiang, Li Lyna Zhang, Yuang Li, Yu Wu, Shijie Cao, Ting Cao,
Yuqing Yang, Jinyu Li, Mao Yang, Lili Qiu
- Abstract summary: We propose a novel compression strategy to reduce the model size and inference cost of the Conformer model.
Our method achieves a 50% reduction in model size and a 28% reduction in inference cost with minimal performance loss.
- Score: 23.897482741744117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic Speech Recognition (ASR) has seen remarkable advancements with deep
neural networks, such as Transformer and Conformer. However, these models
typically have large model sizes and high inference costs, posing a challenge
to deploy on resource-limited devices. In this paper, we propose a novel
compression strategy that leverages structured pruning and knowledge
distillation to reduce the model size and inference cost of the Conformer model
while preserving high recognition performance. Our approach utilizes a set of
binary masks to indicate whether to retain or prune each Conformer module, and
employs L0 regularization to learn the optimal mask values. To further enhance
pruning performance, we use a layerwise distillation strategy to transfer
knowledge from unpruned to pruned models. Our method outperforms all pruning
baselines on the widely used LibriSpeech benchmark, achieving a 50% reduction
in model size and a 28% reduction in inference cost with minimal performance
loss.
Related papers
- Choose Your Model Size: Any Compression by a Single Gradient Descent [9.074689052563878]
We present Any Compression via Iterative Pruning (ACIP)
ACIP is an algorithmic approach to determine a compression-performance trade-off from a single gradient descent run.
We show that ACIP seamlessly complements common quantization-based compression techniques.
arXiv Detail & Related papers (2025-02-03T18:40:58Z) - You Only Prune Once: Designing Calibration-Free Model Compression With Policy Learning [20.62274005080048]
PruneNet is a novel model compression method that reformulates model pruning as a policy learning process.
It can compress the LLaMA-2-7B model in just 15 minutes, achieving over 80% retention of its zero-shot performance.
On complex multitask language understanding tasks, PruneNet demonstrates its robustness by preserving up to 80% performance of the original model.
arXiv Detail & Related papers (2025-01-25T18:26:39Z) - Lightweight and Post-Training Structured Pruning for On-Device Large Lanaguage Models [11.93284417365518]
We introduce COMP, a lightweight post-training structured pruning method that employs a hybrid-granularity pruning strategy.
COMP improves performance by 6.13% on the LLaMA-2-7B model with a 20% pruning ratio compared to LLM-Pruner.
arXiv Detail & Related papers (2025-01-25T16:03:58Z) - Numerical Pruning for Efficient Autoregressive Models [87.56342118369123]
This paper focuses on compressing decoder-only transformer-based autoregressive models through structural weight pruning.
Specifically, we propose a training-free pruning method that calculates a numerical score with Newton's method for the Attention and modules, respectively.
To verify the effectiveness of our method, we provide both theoretical support and extensive experiments.
arXiv Detail & Related papers (2024-12-17T01:09:23Z) - Comb, Prune, Distill: Towards Unified Pruning for Vision Model Compression [24.119415458653616]
We propose a novel unified pruning framework Comb, Prune, Distill (CPD) to address both model-agnostic and task-agnostic concerns simultaneously.
Our framework employs a combing step to resolve hierarchical layer-wise dependency issues, enabling architecture independence.
In image classification we achieve a speedup of up to x4.3 with a accuracy loss of 1.8% and in semantic segmentation up to x1.89 with a 5.1% loss in mIoU.
arXiv Detail & Related papers (2024-08-06T09:02:31Z) - LD-Pruner: Efficient Pruning of Latent Diffusion Models using Task-Agnostic Insights [2.8461446020965435]
We introduce LD-Pruner, a novel performance-preserving structured pruning method for compressing Latent Diffusion Models.
We demonstrate the effectiveness of our approach on three different tasks: text-to-image (T2I) generation, Unconditional Image Generation (UIG) and Unconditional Audio Generation (UAG)
arXiv Detail & Related papers (2024-04-18T06:35:37Z) - MoPE-CLIP: Structured Pruning for Efficient Vision-Language Models with
Module-wise Pruning Error Metric [57.3330687266266]
We find that using smaller pre-trained models and applying magnitude-based pruning on CLIP models leads to inflexibility and inferior performance.
Using the Module-wise Pruning Error (MoPE) metric, we introduce a unified pruning framework applicable to both pre-training and task-specific fine-tuning compression stages.
arXiv Detail & Related papers (2024-03-12T17:24:26Z) - Controlled Sparsity via Constrained Optimization or: How I Learned to
Stop Tuning Penalties and Love Constraints [81.46143788046892]
We focus on the task of controlling the level of sparsity when performing sparse learning.
Existing methods based on sparsity-inducing penalties involve expensive trial-and-error tuning of the penalty factor.
We propose a constrained formulation where sparsification is guided by the training objective and the desired sparsity target in an end-to-end fashion.
arXiv Detail & Related papers (2022-08-08T21:24:20Z) - FOSTER: Feature Boosting and Compression for Class-Incremental Learning [52.603520403933985]
Deep neural networks suffer from catastrophic forgetting when learning new categories.
We propose a novel two-stage learning paradigm FOSTER, empowering the model to learn new categories adaptively.
arXiv Detail & Related papers (2022-04-10T11:38:33Z) - Layer Pruning on Demand with Intermediate CTC [50.509073206630994]
We present a training and pruning method for ASR based on the connectionist temporal classification (CTC)
We show that a Transformer-CTC model can be pruned in various depth on demand, improving real-time factor from 0.005 to 0.002 on GPU.
arXiv Detail & Related papers (2021-06-17T02:40:18Z) - Efficient End-to-End Speech Recognition Using Performers in Conformers [74.71219757585841]
We propose to reduce the complexity of model architectures in addition to model sizes.
The proposed model yields competitive performance on the LibriSpeech corpus with 10 millions of parameters and linear complexity.
arXiv Detail & Related papers (2020-11-09T05:22:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.