FOSTER: Feature Boosting and Compression for Class-Incremental Learning
- URL: http://arxiv.org/abs/2204.04662v1
- Date: Sun, 10 Apr 2022 11:38:33 GMT
- Title: FOSTER: Feature Boosting and Compression for Class-Incremental Learning
- Authors: Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan
- Abstract summary: Deep neural networks suffer from catastrophic forgetting when learning new categories.
We propose a novel two-stage learning paradigm FOSTER, empowering the model to learn new categories adaptively.
- Score: 52.603520403933985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to learn new concepts continually is necessary in this
ever-changing world. However, deep neural networks suffer from catastrophic
forgetting when learning new categories. Many works have been proposed to
alleviate this phenomenon, whereas most of them either fall into the
stability-plasticity dilemma or take too much computation or storage overhead.
Inspired by the gradient boosting algorithm to gradually fit the residuals
between the target and the current approximation function, we propose a novel
two-stage learning paradigm FOSTER, empowering the model to learn new
categories adaptively. Specifically, we first dynamically expand new modules to
fit the residuals of the target and the original model. Next, we remove
redundant parameters and feature dimensions through an effective distillation
strategy to maintain the single backbone model. We validate our method FOSTER
on CIFAR-100, ImageNet-100/1000 under different settings. Experimental results
show that our method achieves state-of-the-art performance.
Related papers
- Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [113.89327264634984]
Few-shot class-incremental learning (FSCIL) confronts the challenge of integrating new classes into a model with minimal training samples.
Traditional methods widely adopt static adaptation relying on a fixed parameter space to learn from data that arrive sequentially.
We propose a dual selective SSM projector that dynamically adjusts the projection parameters based on the intermediate features for dynamic adaptation.
arXiv Detail & Related papers (2024-07-08T17:09:39Z) - Harnessing Neural Unit Dynamics for Effective and Scalable Class-Incremental Learning [38.09011520275557]
Class-incremental learning (CIL) aims to train a model to learn new classes from non-stationary data streams without forgetting old ones.
We propose a new kind of connectionist model by tailoring neural unit dynamics that adapt the behavior of neural networks for CIL.
arXiv Detail & Related papers (2024-06-04T15:47:03Z) - ReconBoost: Boosting Can Achieve Modality Reconcilement [89.4377895465204]
We study the modality-alternating learning paradigm to achieve reconcilement.
We propose a new method called ReconBoost to update a fixed modality each time.
We show that the proposed method resembles Friedman's Gradient-Boosting (GB) algorithm, where the updated learner can correct errors made by others.
arXiv Detail & Related papers (2024-05-15T13:22:39Z) - CEAT: Continual Expansion and Absorption Transformer for Non-Exemplar
Class-Incremental Learning [34.59310641291726]
In real-world applications, dynamic scenarios require the models to possess the capability to learn new tasks continuously without forgetting the old knowledge.
We propose a new architecture, named continual expansion and absorption transformer(CEAT)
The model can learn the novel knowledge by extending the expanded-fusion layers in parallel with the frozen previous parameters.
To improve the learning ability of the model, we designed a novel prototype contrastive loss to reduce the overlap between old and new classes in the feature space.
arXiv Detail & Related papers (2024-03-11T12:40:12Z) - SRIL: Selective Regularization for Class-Incremental Learning [5.810252620242912]
Class-Incremental Learning aims to create an integrated model that balances plasticity and stability to overcome this challenge.
We propose a selective regularization method that accepts new knowledge while maintaining previous knowledge.
We validate the effectiveness of the proposed method through extensive experimental protocols using CIFAR-100, ImageNet-Subset, and ImageNet-Full.
arXiv Detail & Related papers (2023-05-09T05:04:35Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
Online continual learning (OCL) aims to enable model learning from a non-stationary data stream to continuously acquire new knowledge as well as retain the learnt one.
Main challenge comes from the "catastrophic forgetting" issue -- the inability to well remember the learnt knowledge while learning the new ones.
arXiv Detail & Related papers (2022-11-10T05:29:43Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
We introduce Powerpropagation, a new weight- parameterisation for neural networks that leads to inherently sparse models.
Models trained in this manner exhibit similar performance, but have a distribution with markedly higher density at zero, allowing more parameters to be pruned safely.
Here, we combine Powerpropagation with a traditional weight-pruning technique as well as recent state-of-the-art sparse-to-sparse algorithms, showing superior performance on the ImageNet benchmark.
arXiv Detail & Related papers (2021-10-01T10:03:57Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Efficient Feature Transformations for Discriminative and Generative
Continual Learning [98.10425163678082]
We propose a simple task-specific feature map transformation strategy for continual learning.
Theses provide powerful flexibility for learning new tasks, achieved with minimal parameters added to the base architecture.
We demonstrate the efficacy and efficiency of our method with an extensive set of experiments in discriminative (CIFAR-100 and ImageNet-1K) and generative sequences of tasks.
arXiv Detail & Related papers (2021-03-25T01:48:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.