Dictionary Learning under Symmetries via Group Representations
- URL: http://arxiv.org/abs/2305.19557v2
- Date: Tue, 25 Jul 2023 07:18:49 GMT
- Title: Dictionary Learning under Symmetries via Group Representations
- Authors: Subhroshekhar Ghosh, Aaron Y. R. Low, Yong Sheng Soh, Zhuohang Feng,
and Brendan K. Y. Tan
- Abstract summary: We study the problem of learning a dictionary that is invariant under a pre-specified group of transformations.
We apply our paradigm to investigate the dictionary learning problem for the groups SO(2) and SO(3).
- Score: 1.304892050913381
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dictionary learning problem can be viewed as a data-driven process to
learn a suitable transformation so that data is sparsely represented directly
from example data. In this paper, we examine the problem of learning a
dictionary that is invariant under a pre-specified group of transformations.
Natural settings include Cryo-EM, multi-object tracking, synchronization, pose
estimation, etc. We specifically study this problem under the lens of
mathematical representation theory. Leveraging the power of non-abelian Fourier
analysis for functions over compact groups, we prescribe an algorithmic recipe
for learning dictionaries that obey such invariances. We relate the dictionary
learning problem in the physical domain, which is naturally modelled as being
infinite dimensional, with the associated computational problem, which is
necessarily finite dimensional. We establish that the dictionary learning
problem can be effectively understood as an optimization instance over certain
matrix orbitopes having a particular block-diagonal structure governed by the
irreducible representations of the group of symmetries. This perspective
enables us to introduce a band-limiting procedure which obtains dimensionality
reduction in applications. We provide guarantees for our computational ansatz
to provide a desirable dictionary learning outcome. We apply our paradigm to
investigate the dictionary learning problem for the groups SO(2) and SO(3).
While the SO(2)-orbitope admits an exact spectrahedral description,
substantially less is understood about the SO(3)-orbitope. We describe a
tractable spectrahedral outer approximation of the SO(3)-orbitope, and
contribute an alternating minimization paradigm to perform optimization in this
setting. We provide numerical experiments to highlight the efficacy of our
approach in learning SO(3)-invariant dictionaries, both on synthetic and on
real world data.
Related papers
- Symmetry Discovery for Different Data Types [52.2614860099811]
Equivariant neural networks incorporate symmetries into their architecture, achieving higher generalization performance.
We propose LieSD, a method for discovering symmetries via trained neural networks which approximate the input-output mappings of the tasks.
We validate the performance of LieSD on tasks with symmetries such as the two-body problem, the moment of inertia matrix prediction, and top quark tagging.
arXiv Detail & Related papers (2024-10-13T13:39:39Z) - Variational Learning ISTA [13.894911545678635]
We propose an architecture for learning sparse representations and reconstructions under varying sensing matrix conditions.
We learn a distribution over dictionaries via a variational approach, dubbed Variational Learning ISTA (VLISTA)
As a result, VLISTA provides a probabilistic way to jointly learn the dictionary distribution and the reconstruction algorithm with varying sensing matrices.
arXiv Detail & Related papers (2024-07-09T08:17:06Z) - Convergence of alternating minimisation algorithms for dictionary
learning [4.5687771576879594]
We derive sufficient conditions for the convergence of two popular alternating minimisation algorithms for dictionary learning.
We show that given a well-behaved initialisation that is either within distance at most $1/log(K)$ to the generating dictionary or has a special structure ensuring that each element of the initialisation only points to one generating element, both algorithms will converge with geometric convergence rate to the generating dictionary.
arXiv Detail & Related papers (2023-04-04T12:58:47Z) - Learning Invariant Subspaces of Koopman Operators--Part 2: Heterogeneous
Dictionary Mixing to Approximate Subspace Invariance [0.0]
This work builds on the models and concepts presented in part 1 to learn approximate dictionary representations of Koopman operators from data.
We show that structured mixing of heterogeneous dictionary functions achieve the same accuracy and dimensional scaling as the deep-learning-based deepDMD algorithm.
arXiv Detail & Related papers (2022-12-14T17:40:00Z) - Equivalence Between SE(3) Equivariant Networks via Steerable Kernels and
Group Convolution [90.67482899242093]
A wide range of techniques have been proposed in recent years for designing neural networks for 3D data that are equivariant under rotation and translation of the input.
We provide an in-depth analysis of both methods and their equivalence and relate the two constructions to multiview convolutional networks.
We also derive new TFN non-linearities from our equivalence principle and test them on practical benchmark datasets.
arXiv Detail & Related papers (2022-11-29T03:42:11Z) - Equivariance with Learned Canonicalization Functions [77.32483958400282]
We show that learning a small neural network to perform canonicalization is better than using predefineds.
Our experiments show that learning the canonicalization function is competitive with existing techniques for learning equivariant functions across many tasks.
arXiv Detail & Related papers (2022-11-11T21:58:15Z) - Simple Alternating Minimization Provably Solves Complete Dictionary
Learning [13.056764072568749]
This paper focuses on complete dictionary problem, where the goal is to reparametrize a set of given signals as linear combinations of atoms from a learned dictionary.
There are two main challenges faced by theoretical and practical dictionary learning: the lack of theoretical guarantees for practically-used algorithms, and poor scalability when dealing with huge-scale datasets.
arXiv Detail & Related papers (2022-10-23T18:30:45Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - Commutative Lie Group VAE for Disentanglement Learning [96.32813624341833]
We view disentanglement learning as discovering an underlying structure that equivariantly reflects the factorized variations shown in data.
A simple model named Commutative Lie Group VAE is introduced to realize the group-based disentanglement learning.
Experiments show that our model can effectively learn disentangled representations without supervision, and can achieve state-of-the-art performance without extra constraints.
arXiv Detail & Related papers (2021-06-07T07:03:14Z) - Group Invariant Dictionary Learning [0.0]
We develop a framework for learning dictionaries for data under the constraint that the collection of basic building blocks remains invariant under such symmetries.
Our framework specializes to the convolutional dictionary learning problem when we consider integer shifts.
Our numerical experiments on synthetic data and ECG data show that the incorporation of such symmetries as priors are most valuable when the dataset has few data-points.
arXiv Detail & Related papers (2020-07-15T09:03:30Z) - Anchor & Transform: Learning Sparse Embeddings for Large Vocabularies [60.285091454321055]
We design a simple and efficient embedding algorithm that learns a small set of anchor embeddings and a sparse transformation matrix.
On text classification, language modeling, and movie recommendation benchmarks, we show that ANT is particularly suitable for large vocabulary sizes.
arXiv Detail & Related papers (2020-03-18T13:07:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.