論文の概要: RealignDiff: Boosting Text-to-Image Diffusion Model with Coarse-to-fine Semantic Re-alignment
- arxiv url: http://arxiv.org/abs/2305.19599v4
- Date: Wed, 23 Oct 2024 03:59:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:53:46.864028
- Title: RealignDiff: Boosting Text-to-Image Diffusion Model with Coarse-to-fine Semantic Re-alignment
- Title(参考訳): RealignDiff: 粗大なセマンティック再アライメントによるテキスト・画像拡散モデルの構築
- Authors: Guian Fang, Zutao Jiang, Jianhua Han, Guansong Lu, Hang Xu, Shengcai Liao, Xiaojun Chang, Xiaodan Liang,
- Abstract要約: 本稿では,RealignDiffという2段階の粗大なセマンティックアライメント手法を提案する。
粗いセマンティックリアライメントフェーズにおいて、生成された画像キャプションと与えられたテキストプロンプトとのセマンティックな相違を評価するために、新しいキャプション報酬を提案する。
微妙なセマンティックリアライメントステージは、局所的な密集キャプション生成モジュールと再重み付けアテンション変調モジュールを用いて、局所的なセマンティックビューから生成された画像を洗練する。
- 参考スコア(独自算出の注目度): 112.45442468794658
- License:
- Abstract: Recent advances in text-to-image diffusion models have achieved remarkable success in generating high-quality, realistic images from textual descriptions. However, these approaches have faced challenges in precisely aligning the generated visual content with the textual concepts described in the prompts. In this paper, we propose a two-stage coarse-to-fine semantic re-alignment method, named RealignDiff, aimed at improving the alignment between text and images in text-to-image diffusion models. In the coarse semantic re-alignment phase, a novel caption reward, leveraging the BLIP-2 model, is proposed to evaluate the semantic discrepancy between the generated image caption and the given text prompt. Subsequently, the fine semantic re-alignment stage employs a local dense caption generation module and a re-weighting attention modulation module to refine the previously generated images from a local semantic view. Experimental results on the MS-COCO and ViLG-300 datasets demonstrate that the proposed two-stage coarse-to-fine semantic re-alignment method outperforms other baseline re-alignment techniques by a substantial margin in both visual quality and semantic similarity with the input prompt.
- Abstract(参考訳): テキスト・画像拡散モデルの最近の進歩は、テキスト記述から高品質でリアルな画像を生成することに顕著な成功を収めている。
しかし、これらのアプローチは、生成した視覚内容とプロンプトに記述されたテキスト概念を正確に整合させるという課題に直面している。
本稿では,テキストから画像への拡散モデルにおけるテキストと画像のアライメントを改善することを目的とした,RealignDiffという2段階の粗大なセマンティック・アライメント手法を提案する。
粗いセマンティックリアライメントフェーズでは、BLIP-2モデルを利用した新しいキャプション報酬を提案し、生成された画像キャプションと与えられたテキストプロンプトとのセマンティックな相違を評価する。
その後、微妙なセマンティックリアライメントステージは、局所的な密接なキャプション生成モジュールと再重み付けアテンション変調モジュールを用いて、予め生成された画像を局所的なセマンティックビューから洗練する。
MS-COCOとViLG-300データセットの実験結果から、提案手法は、入力プロンプトと視覚的品質と意味的類似性の両方において、他のベースラインのアライメント手法よりも優れていることが示された。
関連論文リスト
- Generating Intermediate Representations for Compositional Text-To-Image Generation [16.757550214291015]
2つの段階に基づくテキスト・画像生成のための合成手法を提案する。
第1段階では,テキストに条件付けされた1つ以上の中間表現を生成する拡散に基づく生成モデルを設計する。
第2段階では、これらの表現をテキストとともに、別個の拡散ベース生成モデルを用いて最終出力画像にマッピングする。
論文 参考訳(メタデータ) (2024-10-13T10:24:55Z) - Contextualized Diffusion Models for Text-Guided Image and Video Generation [67.69171154637172]
条件拡散モデルは高忠実度テキスト誘導視覚生成および編集において優れた性能を示した。
本研究では,テキスト条件と視覚的サンプル間の相互作用とアライメントを包含するクロスモーダルコンテキストを組み込むことにより,コンテキスト拡散モデル(ContextDiff)を提案する。
理論的導出を伴うDDPMとDDIMの両方にモデルを一般化し、テキスト・ツー・イメージ生成とテキスト・ツー・ビデオ編集という2つの課題を伴う評価において、モデルの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-26T15:01:16Z) - Layered Rendering Diffusion Model for Zero-Shot Guided Image Synthesis [60.260724486834164]
本稿では,テキストクエリに依存する拡散モデルにおける空間制御性向上のための革新的な手法を提案する。
視覚誘導(Vision Guidance)とレイヤーレンダリング拡散(Layered Rendering Diffusion)フレームワーク(Layered Diffusion)という2つの重要なイノベーションを提示します。
本稿では,ボックス・ツー・イメージ,セマンティック・マスク・ツー・イメージ,画像編集の3つの実践的応用に適用する。
論文 参考訳(メタデータ) (2023-11-30T10:36:19Z) - Improving Compositional Text-to-image Generation with Large
Vision-Language Models [26.202725136839632]
合成テキスト画像モデルは、入力テキストと整合した高品質な画像を生成するのにしばしば困難に直面する。
生成した画像と対応する入力テキストのアライメントの多次元評価には,大規模視覚言語モデル(LVLM)を用いる。
提案手法は,合成画像生成におけるテキスト画像のアライメントを大幅に改善することを確認した。
論文 参考訳(メタデータ) (2023-10-10T05:09:05Z) - Variational Distribution Learning for Unsupervised Text-to-Image
Generation [42.3246826401366]
本稿では,訓練中に画像のテキストキャプションが利用できない場合に,ディープニューラルネットワークに基づくテキスト画像生成アルゴリズムを提案する。
画像と対応するテキストの埋め込みを結合空間に適切に整列できる事前訓練されたCLIPモデルを用いる。
画像テキストCLIP埋め込みのペア上での条件付きデータログを最大化することにより、テキスト・画像生成モデルを最適化する。
論文 参考訳(メタデータ) (2023-03-28T16:18:56Z) - Learning to Model Multimodal Semantic Alignment for Story Visualization [58.16484259508973]
ストーリービジュアライゼーションは、複数文のストーリーで各文をナレーションする一連の画像を生成することを目的としている。
現在の作業は、その固定されたアーキテクチャと入力モダリティの多様性のため、セマンティックなミスアライメントの問題に直面している。
GANに基づく生成モデルにおいて,テキストと画像表現のセマンティックアライメントを学習し,それらのセマンティックレベルを一致させる方法について検討する。
論文 参考訳(メタデータ) (2022-11-14T11:41:44Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPM) は様々な画像生成タスクにおいて顕著な成功を収めた。
セマンティック画像合成に関する最近の研究は、主に「GAN(Generative Adversarial Nets)」に追従している。
論文 参考訳(メタデータ) (2022-06-30T18:31:51Z) - Text to Image Generation with Semantic-Spatial Aware GAN [41.73685713621705]
テキストから画像生成(T2I)モデルは、テキスト記述と意味的に一致するフォトリアリズム画像を生成することを目的としている。
本稿では,テキストエンコーダがより良いテキスト情報を活用できるように,エンドツーエンドで訓練された新しいフレームワークSemantic-Spatial Aware GANを提案する。
論文 参考訳(メタデータ) (2021-04-01T15:48:01Z) - Enhanced Modality Transition for Image Captioning [51.72997126838352]
MTM(Modality Transition Module)を構築し、言語モデルに転送する前に視覚的機能をセマンティック表現に転送します。
トレーニング段階では、モダリティ遷移ネットワークは提案されたモダリティ損失によって最適化される。
提案手法の有効性を示すMS-COCOデータセットを用いて実験を行った。
論文 参考訳(メタデータ) (2021-02-23T07:20:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。