Search for Multiple Adjacent Marked Vertices on the Hypercube by a Quantum Walk with Partial Phase Inversion
- URL: http://arxiv.org/abs/2305.19614v2
- Date: Sat, 11 May 2024 23:32:56 GMT
- Title: Search for Multiple Adjacent Marked Vertices on the Hypercube by a Quantum Walk with Partial Phase Inversion
- Authors: Luciano S. de Souza, Jonathan H. A. de Carvalho, Henrique C. T. Santos, Tiago A. E. Ferreira,
- Abstract summary: We show that a quantum walk can amplify the probability amplitudes of the target states, reaching success probabilities of values close to $1$.
Our results demonstrate that the partial phase inversion of target states is a promising alternative to search adjacent solutions with quantum walks.
- Score: 3.8436076642278754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is a strong interest in quantum search algorithms, particularly in problems with multiple adjacent solutions. In the hypercube, part of the energy of the quantum system is retained in states adjacent to the target states, decreasing the chances of the target states being observed. This paper applies the Multiself-loop Lackadaisical Quantum Walk with Partial Phase Inversion to search for multiple adjacent marked vertices on the hypercube. Aspects like the type of marked vertices are considered in addition to using multiple self-loops and weight compositions. Two scenarios are analyzed. Firstly, the relative position of non-adjacent marked vertices together with adjacent marked vertices. Secondly, only adjacent marked vertices are analyzed. Here, we show experimentally that, with partial phase inversion, a quantum walk can amplify the probability amplitudes of the target states, reaching success probabilities of values close to $1$. We also show that the relative position of non-adjacent marked vertices does not significantly influence the search results. Our results demonstrate that the partial phase inversion of target states is a promising alternative to search adjacent solutions with quantum walks, which is a key capacity for real search applications.
Related papers
- Quantum Walk Search on Complete Multipartite Graph with Multiple Marked Vertices [7.922488341886121]
This paper examines the quantum walk search algorithm on complete multipartite graphs.
We employ the coined quantum walk model and achieve quadratic speedup.
We also provide the numerical simulation and circuit implementation of our quantum algorithm.
arXiv Detail & Related papers (2024-10-07T11:13:41Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - CCuantuMM: Cycle-Consistent Quantum-Hybrid Matching of Multiple Shapes [62.45415756883437]
Jointly matching multiple, non-rigidly deformed 3D shapes is a challenging, $mathcalNP$-hard problem.
Existing quantum shape-matching methods do not support multiple shapes and even less cycle consistency.
This paper introduces the first quantum-hybrid approach for 3D shape multi-matching.
arXiv Detail & Related papers (2023-03-28T17:59:55Z) - One-Way Ticket to Las Vegas and the Quantum Adversary [78.33558762484924]
We show that quantum Las Vegas query complexity is exactly equal to the quantum adversary bound.
This is achieved by transforming a feasible solution to the adversary inversion problem into a quantum query algorithm.
arXiv Detail & Related papers (2023-01-05T11:05:22Z) - Walking on Vertices and Edges by Continuous-Time Quantum Walk [0.0]
We define a version of the continuous-time quantum walk that allows the walker to hop from vertices to edges and vice versa.
We analyze the spatial search algorithm on the complete bipartite graph by modifying the new version of the Hamiltonian.
arXiv Detail & Related papers (2022-06-07T15:10:18Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Lackadaisical quantum walk in the hypercube to search for multiple
marked vertices [0.0]
In this article, we experimentally address several problems related to quantum walk in the hypercube with self-loops.
We show that, in the case where neighbors are marked, the probability of success increases to close to $1$.
arXiv Detail & Related papers (2021-08-20T23:19:55Z) - On Applying the Lackadaisical Quantum Walk Algorithm to Search for
Multiple Solutions on Grids [63.75363908696257]
The lackadaisical quantum walk is an algorithm developed to search graph structures whose vertices have a self-loop of weight $l$.
This paper addresses several issues related to applying the lackadaisical quantum walk to search for multiple solutions on grids successfully.
arXiv Detail & Related papers (2021-06-11T09:43:09Z) - Quantum walk-based search algorithms with multiple marked vertices [0.0]
The quantum walk is a powerful tool to develop quantum algorithms.
We extend previous analytical methods based on Szegedy's quantum walk.
Two examples based on the coined quantum walk on two-dimensional lattices and hypercubes show the details of our method.
arXiv Detail & Related papers (2021-03-23T22:57:07Z) - Analysis of Lackadaisical Quantum Walks [0.0]
The lackadaisical quantum walk is a quantum analogue of the lazy random walk obtained by adding a self-loop to each.
We analytically prove that lackadaisical quantum walks can find a unique marked.
vertebrae on any regular locally arc-transitive graph with constant success probability.
quadratically faster than the hitting time.
arXiv Detail & Related papers (2020-02-26T00:40:25Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.