Smooth-Trajectron++: Augmenting the Trajectron++ behaviour prediction
model with smooth attention
- URL: http://arxiv.org/abs/2305.19678v2
- Date: Fri, 2 Jun 2023 11:59:40 GMT
- Title: Smooth-Trajectron++: Augmenting the Trajectron++ behaviour prediction
model with smooth attention
- Authors: Frederik S.B. Westerhout, Julian F. Schumann, Arkady Zgonnikov
- Abstract summary: This work investigates the state-of-the-art trajectory forecasting model Trajectron++ which we enhance by incorporating a smoothing term in its attention module.
This attention mechanism mimics human attention inspired by cognitive science research indicating limits to attention switching.
We evaluate the performance of the resulting Smooth-Trajectron++ model and compare it to the original model on various benchmarks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding traffic participants' behaviour is crucial for predicting their
future trajectories, aiding in developing safe and reliable planning systems
for autonomous vehicles. Integrating cognitive processes and machine learning
models has shown promise in other domains but is lacking in the trajectory
forecasting of multiple traffic agents in large-scale autonomous driving
datasets. This work investigates the state-of-the-art trajectory forecasting
model Trajectron++ which we enhance by incorporating a smoothing term in its
attention module. This attention mechanism mimics human attention inspired by
cognitive science research indicating limits to attention switching. We
evaluate the performance of the resulting Smooth-Trajectron++ model and compare
it to the original model on various benchmarks, revealing the potential of
incorporating insights from human cognition into trajectory prediction models.
Related papers
- FollowGen: A Scaled Noise Conditional Diffusion Model for Car-Following Trajectory Prediction [9.2729178775419]
This study introduces a scaled noise conditional diffusion model for car-following trajectory prediction.
It integrates detailed inter-vehicular interactions and car-following dynamics into a generative framework, improving the accuracy and plausibility of predicted trajectories.
Experimental results on diverse real-world driving scenarios demonstrate the state-of-the-art performance and robustness of the proposed method.
arXiv Detail & Related papers (2024-11-23T23:13:45Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Class-Aware Attention for Multimodal Trajectory Prediction [0.7130302992490973]
We present a novel framework for multimodal trajectory prediction in autonomous driving.
Our model is able to run in real-time, achieving a high inference rate of over 300 FPS.
arXiv Detail & Related papers (2022-08-31T18:43:23Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Importance is in your attention: agent importance prediction for
autonomous driving [4.176937532441124]
Trajectory prediction is an important task in autonomous driving.
We show that attention information can also be used to measure the importance of each agent with respect to the ego vehicle's future planned trajectory.
arXiv Detail & Related papers (2022-04-19T20:34:30Z) - Bootstrap Motion Forecasting With Self-Consistent Constraints [52.88100002373369]
We present a novel framework to bootstrap Motion forecasting with Self-consistent Constraints.
The motion forecasting task aims at predicting future trajectories of vehicles by incorporating spatial and temporal information from the past.
We show that our proposed scheme consistently improves the prediction performance of several existing methods.
arXiv Detail & Related papers (2022-04-12T14:59:48Z) - LatentFormer: Multi-Agent Transformer-Based Interaction Modeling and
Trajectory Prediction [12.84508682310717]
We propose LatentFormer, a transformer-based model for predicting future vehicle trajectories.
We evaluate the proposed method on the nuScenes benchmark dataset and show that our approach achieves state-of-the-art performance and improves upon trajectory metrics by up to 40%.
arXiv Detail & Related papers (2022-03-03T17:44:58Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.