論文の概要: Assessing Word Importance Using Models Trained for Semantic Tasks
- arxiv url: http://arxiv.org/abs/2305.19689v1
- Date: Wed, 31 May 2023 09:34:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-01 17:28:13.722477
- Title: Assessing Word Importance Using Models Trained for Semantic Tasks
- Title(参考訳): 意味的タスクを訓練したモデルを用いた単語重要度評価
- Authors: D\'avid Javorsk\'y, Ond\v{r}ej Bojar, Fran\c{c}ois Yvon
- Abstract要約: 我々は、自然言語推論とパラフレーズ同定という、意味的課題を解決するために訓練されたモデルから単語の意義を導き出す。
我々は、いわゆるクロスタスク評価を用いて、それらの妥当性を評価する。
本手法は, 文章中の重要な単語を, 学習における単語のラベル付けを伴わずに識別することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many NLP tasks require to automatically identify the most significant words
in a text. In this work, we derive word significance from models trained to
solve semantic task: Natural Language Inference and Paraphrase Identification.
Using an attribution method aimed to explain the predictions of these models,
we derive importance scores for each input token. We evaluate their relevance
using a so-called cross-task evaluation: Analyzing the performance of one model
on an input masked according to the other model's weight, we show that our
method is robust with respect to the choice of the initial task. Additionally,
we investigate the scores from the syntax point of view and observe interesting
patterns, e.g. words closer to the root of a syntactic tree receive higher
importance scores. Altogether, these observations suggest that our method can
be used to identify important words in sentences without any explicit word
importance labeling in training.
- Abstract(参考訳): 多くのNLPタスクはテキスト内の最も重要な単語を自動的に識別する必要がある。
本研究では,自然言語推論とパラフレーズ同定という,意味課題を解くために訓練されたモデルから単語の意義を導出する。
これらのモデルの予測を説明するための帰属法を用いて,各入力トークンの重要度スコアを導出する。
我々は,その妥当性を,いわゆるクロスタスク評価(cross-task evaluation)を用いて評価する: 他モデルの重みに応じてマスクされた入力モデル上での1つのモデルの性能を解析することにより,初期タスクの選択に関してロバストであることを示す。
さらに,構文的な観点からのスコアを調査し,例えば構文木の根元に近い単語がより重要度の高いスコアを受け取るなど,興味深いパターンを観察する。
これらの結果から,訓練中の単語重要度を明示することなく,文章中の重要な単語を識別できる可能性が示唆された。
関連論文リスト
- CompoundPiece: Evaluating and Improving Decompounding Performance of
Language Models [77.45934004406283]
複合語を構成語に分割する作業である「分解」を体系的に研究する。
We introduced a dataset of 255k compound and non-compound words across 56 various languages obtained from Wiktionary。
分割のための専用モデルを訓練するための新しい手法を導入する。
論文 参考訳(メタデータ) (2023-05-23T16:32:27Z) - Topics in the Haystack: Extracting and Evaluating Topics beyond
Coherence [0.0]
本稿では,文と文書のテーマを深く理解する手法を提案する。
これにより、一般的な単語やネオロジズムを含む潜在トピックを検出することができる。
本稿では, 侵入者の単語の人間識別と相関係数を示し, 単語侵入作業において, ほぼ人間レベルの結果を得る。
論文 参考訳(メタデータ) (2023-03-30T12:24:25Z) - Effective Cross-Task Transfer Learning for Explainable Natural Language
Inference with T5 [50.574918785575655]
2つのタスクのパフォーマンス向上という文脈において、逐次微調整とマルチタスク学習のモデルを比較した。
この結果から,2つのタスクのうち,第1のタスクにおいて逐次マルチタスク学習は良好に調整できるが,第2のタスクでは性能が低下し,過度な適合に苦しむことが明らかとなった。
論文 参考訳(メタデータ) (2022-10-31T13:26:08Z) - Saliency Map Verbalization: Comparing Feature Importance Representations
from Model-free and Instruction-based Methods [6.018950511093273]
サージェンシマップは、重要な入力特徴を特定することによって、ニューラルネットワークの予測を説明することができる。
我々は,サリエンシマップを自然言語に翻訳する未調査課題を定式化する。
本研究では,従来の特徴強調表現と比較した2つの新手法(検索ベースおよび命令ベース言語化)を比較した。
論文 参考訳(メタデータ) (2022-10-13T17:48:15Z) - Exploiting Word Semantics to Enrich Character Representations of Chinese
Pre-trained Models [12.0190584907439]
本稿では,単語構造を利用して語彙意味を事前学習したモデルの文字表現に統合する手法を提案する。
提案手法は,中国の異なるNLPタスクにおけるBERT,BERT-wwm,ERNIEよりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2022-07-13T02:28:08Z) - Improving Multi-task Generalization Ability for Neural Text Matching via
Prompt Learning [54.66399120084227]
最近の最先端のニューラルテキストマッチングモデル(PLM)は、様々なタスクに一般化することが難しい。
我々は、特殊化一般化訓練戦略を採用し、それをMatch-Promptと呼ぶ。
特殊化段階では、異なるマッチングタスクの記述はいくつかのプロンプトトークンにマッピングされる。
一般化段階において、テキストマッチングモデルは、多種多様なマッチングタスクを訓練することにより、本質的なマッチング信号を探索する。
論文 参考訳(メタデータ) (2022-04-06T11:01:08Z) - Importance Estimation from Multiple Perspectives for Keyphrase
Extraction [34.51718374923614]
複数視点からキーフレーズの重要性を推定する新しい手法を提案する(textitKIEMP)。
textitKIEMPは、構文的正確性を測定するチャンキングモジュール、情報の正確性をチェックするランキングモジュール、フレーズとドキュメント全体の概念整合性を判断するマッチングモジュールの3つのモジュールで、フレーズの重要性を見積もっている。
6つのベンチマークデータセットの実験結果から、textitKIEMPは、ほとんどの場合、既存の最先端のキーフレーズ抽出手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-10-19T05:48:22Z) - Understanding Synonymous Referring Expressions via Contrastive Features [105.36814858748285]
画像とオブジェクトインスタンスレベルでのコントラスト機能を学ぶためのエンドツーエンドのトレーニング可能なフレームワークを開発しています。
提案アルゴリズムをいくつかのベンチマークデータセットで評価するための広範囲な実験を行った。
論文 参考訳(メタデータ) (2021-04-20T17:56:24Z) - Prototypical Representation Learning for Relation Extraction [56.501332067073065]
本論文では, 遠隔ラベルデータから予測可能, 解釈可能, 堅牢な関係表現を学習することを目的とする。
文脈情報から各関係のプロトタイプを学習し,関係の本質的意味を最善に探求する。
いくつかの関係学習タスクの結果,本モデルが従来の関係モデルを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-03-22T08:11:43Z) - Words aren't enough, their order matters: On the Robustness of Grounding
Visual Referring Expressions [87.33156149634392]
視覚的参照表現認識のための標準ベンチマークであるRefCOgを批判的に検討する。
83.7%のケースでは言語構造に関する推論は不要である。
比較学習とマルチタスク学習の2つの手法を提案し,ViLBERTのロバスト性を高める。
論文 参考訳(メタデータ) (2020-05-04T17:09:15Z) - Corpus-level and Concept-based Explanations for Interpretable Document
Classification [23.194220621342254]
本稿では,キーワードとモデル予測の間の因果関係を捉えるためのコーパスレベルの説明手法を提案する。
また,より高レベルな概念を自動学習し,モデル予測タスクにおいて重要となる概念に基づく説明手法を提案する。
論文 参考訳(メタデータ) (2020-04-24T20:54:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。