An Empirical Study of Federated Learning on IoT-Edge Devices: Resource
Allocation and Heterogeneity
- URL: http://arxiv.org/abs/2305.19831v1
- Date: Wed, 31 May 2023 13:16:07 GMT
- Title: An Empirical Study of Federated Learning on IoT-Edge Devices: Resource
Allocation and Heterogeneity
- Authors: Kok-Seng Wong, Manh Nguyen-Duc, Khiem Le-Huy, Long Ho-Tuan, Cuong
Do-Danh and Danh Le-Phuoc
- Abstract summary: Federated Learning (FL) is a distributed approach in which a single server and multiple clients collaboratively build an ML model without moving data away from clients.
In this study, we systematically conduct extensive experiments on a large network of IoT and edge devices (called IoT-Edge devices) to present FL real-world characteristics.
- Score: 2.055204980188575
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nowadays, billions of phones, IoT and edge devices around the world generate
data continuously, enabling many Machine Learning (ML)-based products and
applications. However, due to increasing privacy concerns and regulations,
these data tend to reside on devices (clients) instead of being centralized for
performing traditional ML model training. Federated Learning (FL) is a
distributed approach in which a single server and multiple clients
collaboratively build an ML model without moving data away from clients.
Whereas existing studies on FL have their own experimental evaluations, most
experiments were conducted using a simulation setting or a small-scale testbed.
This might limit the understanding of FL implementation in realistic
environments. In this empirical study, we systematically conduct extensive
experiments on a large network of IoT and edge devices (called IoT-Edge
devices) to present FL real-world characteristics, including learning
performance and operation (computation and communication) costs. Moreover, we
mainly concentrate on heterogeneous scenarios, which is the most challenging
issue of FL. By investigating the feasibility of on-device implementation, our
study provides valuable insights for researchers and practitioners, promoting
the practicality of FL and assisting in improving the current design of real FL
systems.
Related papers
- A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
Federated Learning (FL) has become an established technique to facilitate privacy-preserving collaborative training across a multitude of clients.
In the wake of Foundation Models (FM), the reality is different for many deep learning applications.
We discuss the benefits and drawbacks of parameter-efficient fine-tuning (PEFT) for FL applications.
arXiv Detail & Related papers (2024-01-09T10:22:23Z) - Federated Fine-Tuning of LLMs on the Very Edge: The Good, the Bad, the Ugly [62.473245910234304]
This paper takes a hardware-centric approach to explore how Large Language Models can be brought to modern edge computing systems.
We provide a micro-level hardware benchmark, compare the model FLOP utilization to a state-of-the-art data center GPU, and study the network utilization in realistic conditions.
arXiv Detail & Related papers (2023-10-04T20:27:20Z) - FS-Real: Towards Real-World Cross-Device Federated Learning [60.91678132132229]
Federated Learning (FL) aims to train high-quality models in collaboration with distributed clients while not uploading their local data.
There is still a considerable gap between the flourishing FL research and real-world scenarios, mainly caused by the characteristics of heterogeneous devices and its scales.
We propose an efficient and scalable prototyping system for real-world cross-device FL, FS-Real.
arXiv Detail & Related papers (2023-03-23T15:37:17Z) - Enhancing Efficiency in Multidevice Federated Learning through Data Selection [11.67484476827617]
Federated learning (FL) in multidevice environments creates new opportunities to learn from a vast and diverse amount of private data.
In this paper, we develop an FL framework to incorporate on-device data selection on such constrained devices.
We show that our framework achieves 19% higher accuracy and 58% lower latency; compared to the baseline FL without our implemented strategies.
arXiv Detail & Related papers (2022-11-08T11:39:17Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
Federated Learning (FL) has been proposed to achieve distributed machine learning among networked devices.
The impact of on-device storage on the performance of FL is still not explored.
In this work, we take the first step to consider the online data selection for FL with limited on-device storage.
arXiv Detail & Related papers (2022-09-01T03:27:33Z) - On the Impact of Device and Behavioral Heterogeneity in Federated
Learning [5.038980064083677]
Federated learning (FL) is becoming a popular paradigm for collaborative learning over distributed, private datasets owned by non-trusting entities.
This paper describes the challenge of performing training over largely heterogeneous datasets, devices, and networks.
We conduct an empirical study spanning close to 1.5K unique configurations on five popular FL benchmarks.
arXiv Detail & Related papers (2021-02-15T12:04:38Z) - Flower: A Friendly Federated Learning Research Framework [18.54638343801354]
Federated Learning (FL) has emerged as a promising technique for edge devices to collaboratively learn a shared prediction model.
We present Flower -- a comprehensive FL framework that distinguishes itself from existing platforms by offering new facilities to execute large-scale FL experiments.
arXiv Detail & Related papers (2020-07-28T17:59:07Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
Internet of Things (IoT) devices may not be able to transmit their collected data to a central controller for training machine learning models.
Google's seminal FL algorithm requires all devices to be directly connected with a central controller.
This paper introduces a novel FL framework, called collaborative FL (CFL), which enables edge devices to implement FL with less reliance on a central controller.
arXiv Detail & Related papers (2020-06-03T20:00:02Z) - Federated Learning for Resource-Constrained IoT Devices: Panoramas and
State-of-the-art [12.129978716326676]
We introduce some recently implemented real-life applications of Federated Learning.
In large-scale networks, there may be clients with varying computational resource capabilities.
We highlight future directions in the FL area concerning resource-constrained devices.
arXiv Detail & Related papers (2020-02-25T01:03:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.