論文の概要: Deliberate then Generate: Enhanced Prompting Framework for Text
Generation
- arxiv url: http://arxiv.org/abs/2305.19835v1
- Date: Wed, 31 May 2023 13:23:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-01 16:30:35.540280
- Title: Deliberate then Generate: Enhanced Prompting Framework for Text
Generation
- Title(参考訳): Deliberate then Generate: テキスト生成のための拡張プロンプトフレームワーク
- Authors: Bei Li, Rui Wang, Junliang Guo, Kaitao Song, Xu Tan, Hany Hassan, Arul
Menezes, Tong Xiao, Jiang Bian and JingBo Zhu
- Abstract要約: Deliberate then Generate (DTG) プロンプトフレームワークはエラー検出命令とエラーを含む可能性のある候補で構成されている。
我々は、要約、翻訳、対話など、7つのテキスト生成タスクにまたがる20以上のデータセットに関する広範な実験を行う。
本稿では,DTGが既存のプロンプト手法を一貫して上回り,複数のテキスト生成タスクにおける最先端性能を実現することを示す。
- 参考スコア(独自算出の注目度): 70.10319005141888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have shown remarkable success across a wide
range of natural language generation tasks, where proper prompt designs make
great impacts. While existing prompting methods are normally restricted to
providing correct information, in this paper, we encourage the model to
deliberate by proposing a novel Deliberate then Generate (DTG) prompting
framework, which consists of error detection instructions and candidates that
may contain errors. DTG is a simple yet effective technique that can be applied
to various text generation tasks with minimal modifications. We conduct
extensive experiments on 20+ datasets across 7 text generation tasks, including
summarization, translation, dialogue, and more. We show that DTG consistently
outperforms existing prompting methods and achieves state-of-the-art
performance on multiple text generation tasks. We also provide in-depth
analyses to reveal the underlying mechanisms of DTG, which may inspire future
research on prompting for LLMs.
- Abstract(参考訳): 大規模言語モデル(llm)は、適切なプロンプトデザインが大きな影響を与える、幅広い自然言語生成タスクで顕著な成功を収めている。
既存のプロンプト法は通常正しい情報の提供に制限されるが、本論文では、エラー検出命令とエラーを含む可能性のある候補からなる新しいDeliberate then Generate(DTG)プロンプトフレームワークを提案することにより、モデルに意図的に対応させることを推奨する。
DTGは単純だが効果的な手法であり、最小限の変更で様々なテキスト生成タスクに適用できる。
要約,翻訳,対話など7つのテキスト生成タスクにまたがる20以上のデータセットについて,広範な実験を行った。
DTGは既存のプロンプト手法を一貫して上回り、複数のテキスト生成タスクにおける最先端のパフォーマンスを実現する。
また, DTGのメカニズムを明らかにするための詳細な分析を行い, LLMの促進に関する今後の研究を刺激する可能性がある。
関連論文リスト
- GigaCheck: Detecting LLM-generated Content [72.27323884094953]
本稿では,GigaCheckを提案することによって生成したテキスト検出の課題について検討する。
本研究は,LLM生成テキストとLLM生成テキストを区別する手法と,Human-Machine協調テキストにおけるLLM生成間隔を検出する手法について検討する。
具体的には,テキスト内のAI生成間隔をローカライズするために,コンピュータビジョンから適応したDETRのような検出モデルと組み合わせて,微調整の汎用LLMを用いる。
論文 参考訳(メタデータ) (2024-10-31T08:30:55Z) - Controllable Text Generation for Large Language Models: A Survey [27.110528099257156]
本稿では,大規模言語モデルにおける制御可能なテキスト生成の最近の進歩を体系的にレビューする。
我々はCTGタスクをコンテンツ制御と制御の2つの主要なタイプに分類する。
現在の研究における重要な課題には、流用率の低減や実用性といった課題に対処する。
論文 参考訳(メタデータ) (2024-08-22T17:59:04Z) - Controllable Text Generation in the Instruction-Tuning Era [3.310278632293704]
プロンプトベースのアプローチは,ほとんどのデータセットやタスクにおいて,制御可能なテキスト生成方法よりも優れていることがわかった。
制約データセットを自動的に生成するために,タスクデータセットとコンテキスト内機能を備えた大規模言語モデルのみを使用するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2024-05-02T17:24:30Z) - Plug and Play with Prompts: A Prompt Tuning Approach for Controlling Text Generation [16.49758711633611]
大規模言語モデル(LLM)は、テキストベースのプロンプトに応答して、例外的な言語生成能力を示す。
本研究では,制御言語生成におけるPrompt Tuningの利用について検討する。
本稿では, 言語モデルによる有害, 有害, 偏見のあるテキストを緩和する手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-04-08T01:54:28Z) - Meta-Task Prompting Elicits Embeddings from Large Language Models [54.757445048329735]
本稿では,新しい教師なしテキスト埋め込み手法であるMeta-Task Prompting with Explicit One-Word Limitationを紹介する。
モデル微調整を必要とせずに,大規模言語モデルから高品質な文埋め込みを生成する。
提案法は,多種多様なシナリオにまたがって生成を組み込む汎用的で資源効率のよい手法を提供する。
論文 参考訳(メタデータ) (2024-02-28T16:35:52Z) - Unlocking Anticipatory Text Generation: A Constrained Approach for Large Language Models Decoding [75.06872859716049]
大規模言語モデル(LLM)は、テキスト生成の強力な能力を示している。
毒性や幻覚などの望ましくない行動が現れることがある。
将来制約付き生成問題としてテキスト生成の形式化を提案する。
論文 参考訳(メタデータ) (2023-12-11T06:35:33Z) - FacTool: Factuality Detection in Generative AI -- A Tool Augmented
Framework for Multi-Task and Multi-Domain Scenarios [87.12753459582116]
より広い範囲のタスクは、生成モデルによって処理されると、事実エラーを含むリスクが増大する。
大規模言語モデルにより生成されたテキストの事実誤りを検出するためのタスクおよびドメインに依存しないフレームワークであるFacToolを提案する。
論文 参考訳(メタデータ) (2023-07-25T14:20:51Z) - Learning to Transfer Prompts for Text Generation [97.64625999380425]
転送可能なテキスト生成のための新しいプロンプトベース手法(PTG)を提案する。
まず、PTGは、様々なソース生成タスクの一連のソースプロンプトを学習し、ターゲット生成タスクを実行するためのターゲットプロンプトとしてこれらのプロンプトを転送する。
広範な実験では、PTGは微調整法よりも競争力または優れた結果が得られる。
論文 参考訳(メタデータ) (2022-05-03T14:53:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。