Unsupervised Anomaly Detection in Medical Images Using Masked Diffusion
Model
- URL: http://arxiv.org/abs/2305.19867v2
- Date: Mon, 28 Aug 2023 23:47:07 GMT
- Title: Unsupervised Anomaly Detection in Medical Images Using Masked Diffusion
Model
- Authors: Hasan Iqbal, Umar Khalid, Jing Hua, Chen Chen
- Abstract summary: Masked Image Modeling (MIM) and Masked Frequency Modeling (MFM) in our self-supervised approach that enables models to learn visual representations from unlabeled data.
We evaluate our approach on datasets containing tumors and numerous sclerosis lesions.
- Score: 7.116982044576858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It can be challenging to identify brain MRI anomalies using supervised
deep-learning techniques due to anatomical heterogeneity and the requirement
for pixel-level labeling. Unsupervised anomaly detection approaches provide an
alternative solution by relying only on sample-level labels of healthy brains
to generate a desired representation to identify abnormalities at the pixel
level. Although, generative models are crucial for generating such anatomically
consistent representations of healthy brains, accurately generating the
intricate anatomy of the human brain remains a challenge. In this study, we
present a method called masked-DDPM (mDPPM), which introduces masking-based
regularization to reframe the generation task of diffusion models.
Specifically, we introduce Masked Image Modeling (MIM) and Masked Frequency
Modeling (MFM) in our self-supervised approach that enables models to learn
visual representations from unlabeled data. To the best of our knowledge, this
is the first attempt to apply MFM in DPPM models for medical applications. We
evaluate our approach on datasets containing tumors and numerous sclerosis
lesions and exhibit the superior performance of our unsupervised method as
compared to the existing fully/weakly supervised baselines. Code is available
at https://github.com/hasan1292/mDDPM.
Related papers
- MCDDPM: Multichannel Conditional Denoising Diffusion Model for Unsupervised Anomaly Detection in Brain MRI [0.0]
Generative models like Denoising Diffusion Probabilistic Model (DDPM) have emerged as powerful alternatives to perform unsupervised anomaly detection in brain MRI scans.
We propose an improved version of DDPM called Multichannel Conditional Denoising Diffusion Probabilistic Model (MCDDPM) for unsupervised anomaly detection in brain MRI scans.
arXiv Detail & Related papers (2024-09-29T09:15:24Z) - MAEDiff: Masked Autoencoder-enhanced Diffusion Models for Unsupervised
Anomaly Detection in Brain Images [40.89943932086941]
We propose a novel Masked Autoencoder-enhanced Diffusion Model (MAEDiff) for unsupervised anomaly detection in brain images.
The MAEDiff involves a hierarchical patch partition. It generates healthy images by overlapping upper-level patches and implements a mechanism based on the masked autoencoders operating on the sub-level patches to enhance the condition on the unnoised regions.
arXiv Detail & Related papers (2024-01-19T08:54:54Z) - Modality Cycles with Masked Conditional Diffusion for Unsupervised
Anomaly Segmentation in MRI [2.5847188023177403]
Unsupervised anomaly segmentation aims to detect patterns that are distinct from any patterns processed during training.
This paper introduces Masked Modality Cycles with Conditional Diffusion (MMCCD), a method that enables segmentation of anomalies across diverse patterns in multimodal MRI.
We show that our method compares favorably to previous unsupervised approaches based on image reconstruction and denoising with autoencoders and diffusion models.
arXiv Detail & Related papers (2023-08-30T17:16:02Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images [39.94162291765236]
We present a weakly supervised method to generate a healthy version of a diseased image and then use it to obtain a pixel-wise anomaly map.
We employ a diffusion model trained on healthy samples and combine Denoising Diffusion Probabilistic Model (DDPM) and Denoising Implicit Model (DDIM) at each step of the sampling process.
arXiv Detail & Related papers (2023-08-03T21:56:50Z) - Improving Masked Autoencoders by Learning Where to Mask [65.89510231743692]
Masked image modeling is a promising self-supervised learning method for visual data.
We present AutoMAE, a framework that uses Gumbel-Softmax to interlink an adversarially-trained mask generator and a mask-guided image modeling process.
In our experiments, AutoMAE is shown to provide effective pretraining models on standard self-supervised benchmarks and downstream tasks.
arXiv Detail & Related papers (2023-03-12T05:28:55Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
We present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level.
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
arXiv Detail & Related papers (2022-09-25T04:56:10Z) - Shape-Aware Masking for Inpainting in Medical Imaging [49.61617087640379]
Inpainting has been proposed as a successful deep learning technique for unsupervised medical image model discovery.
We introduce a method for generating shape-aware masks for inpainting, which aims at learning the statistical shape prior.
We propose an unsupervised guided masking approach based on an off-the-shelf inpainting model and a superpixel over-segmentation algorithm.
arXiv Detail & Related papers (2022-07-12T18:35:17Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.