MAD-AD: Masked Diffusion for Unsupervised Brain Anomaly Detection
- URL: http://arxiv.org/abs/2502.16943v2
- Date: Thu, 20 Mar 2025 21:42:00 GMT
- Title: MAD-AD: Masked Diffusion for Unsupervised Brain Anomaly Detection
- Authors: Farzad Beizaee, Gregory Lodygensky, Christian Desrosiers, Jose Dolz,
- Abstract summary: Unsupervised anomaly detection in brain images is crucial for identifying injuries and pathologies without access to labels.<n>We propose a novel approach that incorporates masking within diffusion models, leveraging their generative capabilities to learn robust representations of normal brain anatomy.<n>Our method surpasses existing unsupervised anomaly detection techniques, demonstrating superior performance in generating accurate normal counterparts and localizing anomalies.
- Score: 15.572896213775438
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Unsupervised anomaly detection in brain images is crucial for identifying injuries and pathologies without access to labels. However, the accurate localization of anomalies in medical images remains challenging due to the inherent complexity and variability of brain structures and the scarcity of annotated abnormal data. To address this challenge, we propose a novel approach that incorporates masking within diffusion models, leveraging their generative capabilities to learn robust representations of normal brain anatomy. During training, our model processes only normal brain MRI scans and performs a forward diffusion process in the latent space that adds noise to the features of randomly-selected patches. Following a dual objective, the model learns to identify which patches are noisy and recover their original features. This strategy ensures that the model captures intricate patterns of normal brain structures while isolating potential anomalies as noise in the latent space. At inference, the model identifies noisy patches corresponding to anomalies and generates a normal counterpart for these patches by applying a reverse diffusion process. Our method surpasses existing unsupervised anomaly detection techniques, demonstrating superior performance in generating accurate normal counterparts and localizing anomalies. The code is available at hhttps://github.com/farzad-bz/MAD-AD.
Related papers
- One-for-More: Continual Diffusion Model for Anomaly Detection [61.12622458367425]
Anomaly detection methods utilize diffusion models to generate or reconstruct normal samples when given arbitrary anomaly images.
Our study found that the diffusion model suffers from severe faithfulness hallucination'' and catastrophic forgetting''
We propose a continual diffusion model that uses gradient projection to achieve stable continual learning.
arXiv Detail & Related papers (2025-02-27T07:47:27Z) - Unsupervised Detection of Fetal Brain Anomalies using Denoising Diffusion Models [7.288800350138796]
We frame fetal brain anomaly detection as an unsupervised task using diffusion models.
Our experiments on a real-world clinical dataset show the potential of using unsupervised methods for fetal brain anomaly detection.
arXiv Detail & Related papers (2024-08-07T09:40:26Z) - GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
Diffusion models tend to reconstruct normal counterparts of test images with certain noises added.
From the global perspective, the difficulty of reconstructing images with different anomalies is uneven.
We propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection.
arXiv Detail & Related papers (2024-06-11T17:27:23Z) - MAEDiff: Masked Autoencoder-enhanced Diffusion Models for Unsupervised
Anomaly Detection in Brain Images [40.89943932086941]
We propose a novel Masked Autoencoder-enhanced Diffusion Model (MAEDiff) for unsupervised anomaly detection in brain images.
The MAEDiff involves a hierarchical patch partition. It generates healthy images by overlapping upper-level patches and implements a mechanism based on the masked autoencoders operating on the sub-level patches to enhance the condition on the unnoised regions.
arXiv Detail & Related papers (2024-01-19T08:54:54Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Diffusion Models for Medical Anomaly Detection [0.8999666725996974]
We present a novel weakly supervised anomaly detection method based on denoising diffusion implicit models.
Our method generates very detailed anomaly maps without the need for a complex training procedure.
arXiv Detail & Related papers (2022-03-08T12:35:07Z) - Self-Supervised Predictive Convolutional Attentive Block for Anomaly
Detection [97.93062818228015]
We propose to integrate the reconstruction-based functionality into a novel self-supervised predictive architectural building block.
Our block is equipped with a loss that minimizes the reconstruction error with respect to the masked area in the receptive field.
We demonstrate the generality of our block by integrating it into several state-of-the-art frameworks for anomaly detection on image and video.
arXiv Detail & Related papers (2021-11-17T13:30:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.