論文の概要: RaSP: Relation-aware Semantic Prior for Weakly Supervised Incremental
Segmentation
- arxiv url: http://arxiv.org/abs/2305.19879v1
- Date: Wed, 31 May 2023 14:14:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-01 16:11:56.377969
- Title: RaSP: Relation-aware Semantic Prior for Weakly Supervised Incremental
Segmentation
- Title(参考訳): RaSP: 弱監視インクリメンタルセグメンテーションのための関係認識セマンティックプリミティブ
- Authors: Subhankar Roy, Riccardo Volpi, Gabriela Csurka, Diane Larlus
- Abstract要約: 本稿では,事前学習したクラスから新しいクラスにオブジェクトを移すための弱い教師付きアプローチを提案する。
クラス間の単純なペアインタラクションでさえ、古いクラスと新しいクラスのセグメンテーションマスクの品質を大幅に向上させることができることを示す。
- 参考スコア(独自算出の注目度): 28.02204928717511
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Class-incremental semantic image segmentation assumes multiple model updates,
each enriching the model to segment new categories. This is typically carried
out by providing expensive pixel-level annotations to the training algorithm
for all new objects, limiting the adoption of such methods in practical
applications. Approaches that solely require image-level labels offer an
attractive alternative, yet, such coarse annotations lack precise information
about the location and boundary of the new objects. In this paper we argue
that, since classes represent not just indices but semantic entities, the
conceptual relationships between them can provide valuable information that
should be leveraged. We propose a weakly supervised approach that exploits such
semantic relations to transfer objectness prior from the previously learned
classes into the new ones, complementing the supervisory signal from
image-level labels. We validate our approach on a number of continual learning
tasks, and show how even a simple pairwise interaction between classes can
significantly improve the segmentation mask quality of both old and new
classes. We show these conclusions still hold for longer and, hence, more
realistic sequences of tasks and for a challenging few-shot scenario.
- Abstract(参考訳): クラスインクリメンタルなセマンティックイメージセグメンテーションは、複数のモデル更新を前提としており、それぞれがモデルを強化して新しいカテゴリをセグメンテーションする。
これは一般的に、新しいオブジェクトのトレーニングアルゴリズムに高価なピクセルレベルのアノテーションを提供することで実行され、実用的なアプリケーションでのそのような方法の採用を制限している。
画像レベルのラベルのみを必要とするアプローチは、魅力的な代替手段を提供するが、そのような粗いアノテーションには、新しいオブジェクトの位置と境界に関する正確な情報がない。
本稿では,クラスは単なる指標ではなく意味的実体を表すので,それらの概念的関係は活用すべき貴重な情報を提供することができる,と論じる。
本稿では,このような意味関係を生かして,画像レベルラベルからの監視信号を補完して,学習したクラスから新しいクラスへオブジェクトを転送する,弱い教師付きアプローチを提案する。
我々は,複数の連続学習タスクに対するアプローチを検証するとともに,クラス間の単純なペアワイズインタラクションさえも,旧クラスと新クラスのセグメンテーションマスク品質を大幅に改善できることを示す。
これらの結論は、より長く、従ってより現実的なタスクのシーケンスと、難易度の低いシナリオに留まっています。
関連論文リスト
- Tendency-driven Mutual Exclusivity for Weakly Supervised Incremental Semantic Segmentation [56.1776710527814]
Weakly Incremental Learning for Semantic (WILSS)は、トレーニング済みのセグメンテーションモデルを利用して、コスト効率と手軽に利用できるイメージレベルのラベルを使用して、新しいクラスをセグメンテーションする。
WILSSを解く最も一般的な方法は、各新しいクラスのシード領域の生成であり、ピクセルレベルの監視の一形態として機能する。
本研究は, 種子領域の挙動を綿密に調整した, 相互排他性に関する革新的, 傾向的関係について提案する。
論文 参考訳(メタデータ) (2024-04-18T08:23:24Z) - Class Enhancement Losses with Pseudo Labels for Zero-shot Semantic
Segmentation [40.09476732999614]
マスクの提案モデルは、ゼロショットセマンティックセグメンテーションの性能を大幅に改善した。
トレーニング中にバックグラウンドを埋め込むことは問題であり、結果として得られたモデルが過剰に学習し、正しいラベルではなく、すべての見えないクラスをバックグラウンドクラスとして割り当てる傾向がある。
本稿では,学習中の背景埋め込みの使用を回避し,テキスト埋め込みとマスク提案のセマンティックな関係を類似度スコアのランク付けにより活用する新しいクラス拡張損失を提案する。
論文 参考訳(メタデータ) (2023-01-18T06:55:02Z) - Modeling the Background for Incremental and Weakly-Supervised Semantic
Segmentation [39.025848280224785]
セマンティックセグメンテーションのための新しい漸進的なクラス学習手法を提案する。
各トレーニングステップは、すべての可能なクラスのサブセットにのみアノテーションを提供するので、バックグラウンドクラスのピクセルはセマンティックシフトを示す。
本研究では,Pascal-VOC,ADE20K,Cityscapesのデータセットを広範囲に評価し,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-01-31T16:33:21Z) - Novel Class Discovery in Semantic Segmentation [104.30729847367104]
セマンティックにおける新しいクラス発見(NCDSS)について紹介する。
ラベル付き非結合クラスの集合から事前の知識を与えられた新しいクラスを含むラベル付きイメージのセグメンテーションを目的としている。
NCDSSでは、オブジェクトと背景を区別し、画像内の複数のクラスの存在を処理する必要があります。
本稿では,エントロピーに基づく不確実性モデリングと自己学習(EUMS)フレームワークを提案し,ノイズの多い擬似ラベルを克服する。
論文 参考訳(メタデータ) (2021-12-03T13:31:59Z) - Incremental Learning in Semantic Segmentation from Image Labels [18.404068463921426]
既存のセマンティックセグメンテーションアプローチは印象的な結果を得るが、新しいカテゴリが発見されるにつれてモデルを漸進的に更新することは困難である。
本稿では、安価で広く利用可能な画像レベルのラベルから新しいクラスを分類することを目的とした、Weakly Incremental Learning for Semanticsのための新しいフレームワークを提案する。
擬似ラベルをオフラインで生成する既存のアプローチとは対照的に、画像レベルのラベルで訓練され、セグメンテーションモデルで正規化される補助分類器を使用して、擬似スーパービジョンをオンラインで取得し、モデルを漸進的に更新する。
論文 参考訳(メタデータ) (2021-12-03T12:47:12Z) - A Closer Look at Self-training for Zero-Label Semantic Segmentation [53.4488444382874]
トレーニング中に見られないクラスをセグメント化できることは、ディープラーニングにおいて重要な技術的課題です。
事前のゼロラベルセマンティクスセグメンテーションは、ビジュアル・セマンティクスの埋め込みや生成モデルを学ぶことによってこのタスクにアプローチする。
本研究では,同一画像の異なる増分から生じる擬似ラベルの交点を取り出し,ノイズの多い擬似ラベルをフィルタリングする整合性正規化器を提案する。
論文 参考訳(メタデータ) (2021-04-21T14:34:33Z) - Half-Real Half-Fake Distillation for Class-Incremental Semantic
Segmentation [84.1985497426083]
畳み込みニューラルネットワークは漸進的な学習に不適である。
新しいクラスは利用できるが、初期トレーニングデータは保持されない。
訓練されたセグメンテーションネットワークを「反転」して、ランダムノイズから始まる入力画像の合成を試みる。
論文 参考訳(メタデータ) (2021-04-02T03:47:16Z) - A Few Guidelines for Incremental Few-Shot Segmentation [57.34237650765928]
事前訓練されたセグメンテーションモデルと、新しいクラスを含む画像が少ないことを前提として、我々が目指すのは、以前に見たセグメンテーション能力を維持しながら、新しいクラスをセグメンテーションすることである。
このシナリオにおけるエンド・ツー・エンドのトレーニングの主な問題はどのようなものかを示します。
一 バッチ正規化統計を、バッチ正規化で修正できる新しいクラスへ向けての漂流すること。
二 旧クラスの忘れ物 正規化戦略で解決できるもの。
論文 参考訳(メタデータ) (2020-11-30T20:45:56Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
2つのニューラルコアテンションを分類器に組み込んで、画像間のセマンティックな類似点と相違点をキャプチャする。
オブジェクトパターン学習の強化に加えて、コアテンションは他の関連する画像からのコンテキストを活用して、ローカライズマップの推論を改善することができる。
提案アルゴリズムは,これらすべての設定に対して新たな最先端性を設定し,その有効性と一般化性を示す。
論文 参考訳(メタデータ) (2020-07-03T21:53:46Z) - Class-Incremental Learning for Semantic Segmentation Re-Using Neither
Old Data Nor Old Labels [35.586031601299034]
本稿では,モデルが当初トレーニングしたラベル付きデータを用いることなく,セマンティックセグメンテーションのためのクラスインクリメンタル学習を実装する手法を提案する。
本稿では,新しいクラスにのみラベルを必要とする新しいクラス増分学習手法を用いて,これらの問題を克服する方法を示す。
本手法をCityscapesデータセット上で評価し,全ベースラインのmIoU性能を3.5%絶対的に上回る結果を得た。
論文 参考訳(メタデータ) (2020-05-12T21:03:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。