VILAS: Exploring the Effects of Vision and Language Context in Automatic
Speech Recognition
- URL: http://arxiv.org/abs/2305.19972v2
- Date: Mon, 18 Dec 2023 12:29:00 GMT
- Title: VILAS: Exploring the Effects of Vision and Language Context in Automatic
Speech Recognition
- Authors: Ziyi Ni and Minglun Han and Feilong Chen and Linghui Meng and Jing Shi
and Pin Lv and Bo Xu
- Abstract summary: ViLaS (Vision and Language into Automatic Speech Recognition) is a novel multimodal ASR model based on the continuous integrate-and-fire (CIF) mechanism.
To explore the effects of integrating vision and language, we create VSDial, a multimodal ASR dataset with multimodal context cues in both Chinese and English versions.
- Score: 18.19998336526969
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enhancing automatic speech recognition (ASR) performance by leveraging
additional multimodal information has shown promising results in previous
studies. However, most of these works have primarily focused on utilizing
visual cues derived from human lip motions. In fact, context-dependent visual
and linguistic cues can also benefit in many scenarios. In this paper, we first
propose ViLaS (Vision and Language into Automatic Speech Recognition), a novel
multimodal ASR model based on the continuous integrate-and-fire (CIF)
mechanism, which can integrate visual and textual context simultaneously or
separately, to facilitate speech recognition. Next, we introduce an effective
training strategy that improves performance in modal-incomplete test scenarios.
Then, to explore the effects of integrating vision and language, we create
VSDial, a multimodal ASR dataset with multimodal context cues in both Chinese
and English versions. Finally, empirical results are reported on the public
Flickr8K and self-constructed VSDial datasets. We explore various cross-modal
fusion schemes, analyze fine-grained crossmodal alignment on VSDial, and
provide insights into the effects of integrating multimodal information on
speech recognition.
Related papers
- CLIP-VAD: Exploiting Vision-Language Models for Voice Activity Detection [2.110168344647122]
Voice Activity Detection (VAD) is the process of automatically determining whether a person is speaking and identifying the timing of their speech.
We introduce a novel approach leveraging Contrastive Language-Image Pretraining (CLIP) models.
Our approach outperforms several audio-visual methods despite its simplicity, and without requiring pre-training on extensive audio-visual datasets.
arXiv Detail & Related papers (2024-10-18T14:43:34Z) - Bridging the Gap between Text, Audio, Image, and Any Sequence: A Novel Approach using Gloss-based Annotation [5.528860524494717]
This paper presents an innovative approach called BGTAI to simplify multimodal understanding by utilizing gloss-based annotation.
By representing text and audio as gloss notations that omit complex semantic nuances, a better alignment with images can potentially be achieved.
arXiv Detail & Related papers (2024-10-04T04:59:50Z) - VHASR: A Multimodal Speech Recognition System With Vision Hotwords [74.94430247036945]
VHASR is a multimodal speech recognition system that uses vision as hotwords to strengthen the model's speech recognition capability.
VHASR can effectively utilize key information in images to enhance the model's speech recognition ability.
arXiv Detail & Related papers (2024-10-01T16:06:02Z) - Robust Audiovisual Speech Recognition Models with Mixture-of-Experts [67.75334989582709]
We introduce EVA, leveraging the mixture-of-Experts for audioVisual ASR to perform robust speech recognition for in-the-wild'' videos.
We first encode visual information into visual tokens sequence and map them into speech space by a lightweight projection.
Experiments show our model achieves state-of-the-art results on three benchmarks.
arXiv Detail & Related papers (2024-09-19T00:08:28Z) - Exploring Interactive Semantic Alignment for Efficient HOI Detection with Vision-language Model [3.3772986620114387]
We introduce ISA-HOI, which extensively leverages knowledge from CLIP, aligning interactive semantics between visual and textual features.
Our method achieves competitive results on the HICO-DET and V-COCO benchmarks with much fewer training epochs, and outperforms the state-of-the-art under zero-shot settings.
arXiv Detail & Related papers (2024-04-19T07:24:32Z) - Efficient Training for Multilingual Visual Speech Recognition: Pre-training with Discretized Visual Speech Representation [55.15299351110525]
This paper explores sentence-level multilingual Visual Speech Recognition (VSR) that can recognize different languages with a single trained model.
We propose a novel training strategy, processing with visual speech units.
We set new state-of-the-art multilingual VSR performances by achieving comparable performances to the previous language-specific VSR models.
arXiv Detail & Related papers (2024-01-18T08:46:02Z) - Towards More Unified In-context Visual Understanding [74.55332581979292]
We present a new ICL framework for visual understanding with multi-modal output enabled.
First, we quantize and embed both text and visual prompt into a unified representational space.
Then a decoder-only sparse transformer architecture is employed to perform generative modeling on them.
arXiv Detail & Related papers (2023-12-05T06:02:21Z) - Contextual Object Detection with Multimodal Large Language Models [66.15566719178327]
We introduce a novel research problem of contextual object detection.
Three representative scenarios are investigated, including the language cloze test, visual captioning, and question answering.
We present ContextDET, a unified multimodal model that is capable of end-to-end differentiable modeling of visual-language contexts.
arXiv Detail & Related papers (2023-05-29T17:50:33Z) - VATLM: Visual-Audio-Text Pre-Training with Unified Masked Prediction for
Speech Representation Learning [119.49605266839053]
We propose a unified cross-modal representation learning framework VATLM (Visual-Audio-Text Language Model)
The proposed VATLM employs a unified backbone network to model the modality-independent information.
In order to integrate these three modalities into one shared semantic space, VATLM is optimized with a masked prediction task of unified tokens.
arXiv Detail & Related papers (2022-11-21T09:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.