Learning to solve Bayesian inverse problems: An amortized variational inference approach using Gaussian and Flow guides
- URL: http://arxiv.org/abs/2305.20004v3
- Date: Sat, 25 May 2024 19:47:53 GMT
- Title: Learning to solve Bayesian inverse problems: An amortized variational inference approach using Gaussian and Flow guides
- Authors: Sharmila Karumuri, Ilias Bilionis,
- Abstract summary: We develop a methodology that enables real-time inference by learning the Bayesian inverse map, i.e., the map from data to posteriors.
Our approach provides the posterior distribution for a given observation just at the cost of a forward pass of the neural network.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inverse problems, i.e., estimating parameters of physical models from experimental data, are ubiquitous in science and engineering. The Bayesian formulation is the gold standard because it alleviates ill-posedness issues and quantifies epistemic uncertainty. Since analytical posteriors are not typically available, one resorts to Markov chain Monte Carlo sampling or approximate variational inference. However, inference needs to be rerun from scratch for each new set of data. This drawback limits the applicability of the Bayesian formulation to real-time settings, e.g., health monitoring of engineered systems, and medical diagnosis. The objective of this paper is to develop a methodology that enables real-time inference by learning the Bayesian inverse map, i.e., the map from data to posteriors. Our approach is as follows. We parameterize the posterior distribution as a function of data. This work outlines two distinct approaches to do this. The first method involves parameterizing the posterior using an amortized full-rank Gaussian guide, implemented through neural networks. The second method utilizes a Conditional Normalizing Flow guide, employing conditional invertible neural networks for cases where the target posterior is arbitrarily complex. In both approaches, we learn the network parameters by amortized variational inference which involves maximizing the expectation of evidence lower bound over all possible datasets compatible with the model. We demonstrate our approach by solving a set of benchmark problems from science and engineering. Our results show that the posterior estimates of our approach are in agreement with the corresponding ground truth obtained by Markov chain Monte Carlo. Once trained, our approach provides the posterior distribution for a given observation just at the cost of a forward pass of the neural network.
Related papers
- BALI: Learning Neural Networks via Bayesian Layerwise Inference [6.7819070167076045]
We introduce a new method for learning Bayesian neural networks, treating them as a stack of multivariate Bayesian linear regression models.
The main idea is to infer the layerwise posterior exactly if we know the target outputs of each layer.
We define these pseudo-targets as the layer outputs from the forward pass, updated by the backpropagated of the objective function.
arXiv Detail & Related papers (2024-11-18T22:18:34Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
We explore a family of expressive and interpretable distributions over circle-valued random functions.
The resulting probability model has connections with continuous spin models in statistical physics.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Markov Chain Monte Carlo sampling.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
This paper studies amortized sampling of the posterior over data, $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$, in a model that consists of a diffusion generative model prior $p(mathbfx)$ and a black-box constraint or function $r(mathbfx)$.
We prove the correctness of a data-free learning objective, relative trajectory balance, for training a diffusion model that samples from
arXiv Detail & Related papers (2024-05-31T16:18:46Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Refining Amortized Posterior Approximations using Gradient-Based Summary
Statistics [0.9176056742068814]
We present an iterative framework to improve the amortized approximations of posterior distributions in the context of inverse problems.
We validate our method in a controlled setting by applying it to a stylized problem, and observe improved posterior approximations with each iteration.
arXiv Detail & Related papers (2023-05-15T15:47:19Z) - Variational Laplace Autoencoders [53.08170674326728]
Variational autoencoders employ an amortized inference model to approximate the posterior of latent variables.
We present a novel approach that addresses the limited posterior expressiveness of fully-factorized Gaussian assumption.
We also present a general framework named Variational Laplace Autoencoders (VLAEs) for training deep generative models.
arXiv Detail & Related papers (2022-11-30T18:59:27Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
We study how to discover interpretable equivariances from data.
Specifically, we formulate this discovery process as an optimization problem over a model's parameter-sharing schemes.
Also, we theoretically analyze the method for Gaussian data and provide a bound on the mean squared gap between the studied discovery scheme and the oracle scheme.
arXiv Detail & Related papers (2022-04-07T17:59:19Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - The Bayesian Method of Tensor Networks [1.7894377200944511]
We study the Bayesian framework of the Network from two perspective.
We study the Bayesian properties of the Network by visualizing the parameters of the model and the decision boundaries in the two dimensional synthetic data set.
arXiv Detail & Related papers (2021-01-01T14:59:15Z) - Bayesian Neural Network via Stochastic Gradient Descent [0.0]
We show how gradient estimation can be applied on bayesian neural networks by gradient estimation techniques.
Our work considerably beats the previous state of the art approaches for regression using bayesian neural networks.
arXiv Detail & Related papers (2020-06-04T18:33:59Z) - Parameterizing uncertainty by deep invertible networks, an application
to reservoir characterization [0.9176056742068814]
Uncertainty quantification for full-waveform inversion provides a probabilistic characterization of the ill-conditioning of the problem.
We propose an approach characterized by training a deep network that "pushes forward" Gaussian random inputs into the model space as if they were sampled from the actual posterior distribution.
arXiv Detail & Related papers (2020-04-16T18:37:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.