論文の概要: Constrained Causal Bayesian Optimization
- arxiv url: http://arxiv.org/abs/2305.20011v1
- Date: Wed, 31 May 2023 16:34:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-01 15:11:35.096427
- Title: Constrained Causal Bayesian Optimization
- Title(参考訳): 制約付き因果ベイズ最適化
- Authors: Virginia Aglietti, Alan Malek, Ira Ktena, Silvia Chiappa
- Abstract要約: cCBOはまず、グラフ構造を利用して探索空間を減らし、もし可能であれば観測データセットを作成する。
実世界の因果グラフ上でcCBOを評価し, 高速収束と実現可能な介入の比率のトレードオフが成功したことを示す。
- 参考スコア(独自算出の注目度): 9.409281517596396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose constrained causal Bayesian optimization (cCBO), an approach for
finding interventions in a known causal graph that optimize a target variable
under some constraints. cCBO first reduces the search space by exploiting the
graph structure and, if available, an observational dataset; and then solves
the restricted optimization problem by modelling target and constraint
quantities using Gaussian processes and by sequentially selecting interventions
via a constrained expected improvement acquisition function. We propose
different surrogate models that enable to integrate observational and
interventional data while capturing correlation among effects with increasing
levels of sophistication. We evaluate cCBO on artificial and real-world causal
graphs showing successful trade off between fast convergence and percentage of
feasible interventions.
- Abstract(参考訳): 制約条件下でターゲット変数を最適化する既知の因果グラフの介入を見つけるための制約付き因果ベイズ最適化(cCBO)を提案する。
cCBOはまず、グラフ構造を利用して探索空間を縮小し、もし利用可能であれば観測データセットを用いて、ガウス過程を用いて目標と制約量をモデル化し、制約付き予測改善獲得関数を介して介入を順次選択することで制限された最適化問題を解く。
本研究では,観察データと介入データの統合を可能とし,効果間の相関と高度化のレベルの増加を捉えるサーロゲートモデルを提案する。
実世界の因果グラフ上でcCBOを評価し, 高速収束と実現可能な介入の比率のトレードオフが成功したことを示す。
関連論文リスト
- Graph Agnostic Causal Bayesian Optimisation [2.624902795082451]
本研究では,ソフトな介入やハードな介入を行なえる未知の因果グラフのターゲット変数を大域的に最適化する問題について検討する。
本稿では,最適報酬の達成に寄与する因果構造を積極的に発見するアルゴリズムであるグラフアグノスティック因果ベイズ最適化(GACBO)を提案する。
提案アルゴリズムは,シミュレーション実験や実世界の応用において,ベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-11-05T11:49:33Z) - Efficient Differentiable Discovery of Causal Order [14.980926991441342]
Intersortは、変数の因果順序を発見するためのスコアベースの方法である。
我々は、差別化可能なソートとランキング技術を用いてインターソートを再構築する。
我々の研究は、因果順の正規化を微分可能なモデルの訓練に効率的に組み込むための扉を開く。
論文 参考訳(メタデータ) (2024-10-11T13:11:55Z) - Model-based Causal Bayesian Optimization [74.78486244786083]
乗算重み付き因果ベイズ最適化のための最初のアルゴリズム(CBO-MW)を提案する。
グラフ関連の量に自然に依存するCBO-MWに対する後悔の限界を導出する。
我々の実験は、共有モビリティシステムにおいて、ユーザの需要パターンを学習するためにCBO-MWをどのように使用できるかの現実的なデモを含む。
論文 参考訳(メタデータ) (2023-07-31T13:02:36Z) - Functional Causal Bayesian Optimization [21.67333624383642]
fCBOは、既知の因果グラフでターゲット変数を最適化する介入を見つける方法である。
機能的介入を検討する際に確立されるグラフィカルな基準と、選択された介入が条件的標的効果に最適である条件を導入する。
論文 参考訳(メタデータ) (2023-06-10T11:02:53Z) - Model-based Causal Bayesian Optimization [78.120734120667]
モデルに基づく因果ベイズ最適化(MCBO)を提案する。
MCBOは介入と逆のペアをモデリングするのではなく、完全なシステムモデルを学ぶ。
標準的なベイズ最適化とは異なり、我々の取得関数は閉形式では評価できない。
論文 参考訳(メタデータ) (2022-11-18T14:28:21Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - Active Learning for Optimal Intervention Design in Causal Models [11.294389953686945]
本研究は、最適介入を特定するための因果的アクティブラーニング戦略を開発し、分布のインターベンショナル平均と所望の目標平均との相違によって測定した。
本研究では、Perturb-CITE-seq実験から得られた合成データと単細胞転写データの両方にアプローチを適用し、特定の細胞状態遷移を誘導する最適な摂動を同定する。
論文 参考訳(メタデータ) (2022-09-10T20:40:30Z) - Optimization-Induced Graph Implicit Nonlinear Diffusion [64.39772634635273]
我々はGIND(Graph Implicit Diffusion)と呼ばれる新しいグラフ畳み込み変種を提案する。
GINDは暗黙的に隣人の無限のホップにアクセスでき、非線型拡散を伴う特徴を適応的に集約することで過度な平滑化を防いでいる。
学習された表現は、明示的な凸最適化目標の最小化として定式化できることを示す。
論文 参考訳(メタデータ) (2022-06-29T06:26:42Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Causal Bayesian Optimization [8.958125394444679]
本研究では、介入の順序が実行される因果モデルの一部である関心の変数をグローバルに最適化する問題について検討する。
私たちのアプローチは、因果推論、不確実性定量化、シーケンシャルな意思決定といったアイデアを組み合わせています。
因果グラフを理解することで、最適な意思決定戦略を推論する能力が大幅に向上することを示す。
論文 参考訳(メタデータ) (2020-05-24T13:20:50Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。