論文の概要: Three-Way Trade-Off in Multi-Objective Learning: Optimization,
Generalization and Conflict-Avoidance
- arxiv url: http://arxiv.org/abs/2305.20057v1
- Date: Wed, 31 May 2023 17:31:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-01 14:53:50.959164
- Title: Three-Way Trade-Off in Multi-Objective Learning: Optimization,
Generalization and Conflict-Avoidance
- Title(参考訳): 多目的学習における三段階貿易--最適化・一般化・衝突回避
- Authors: Lisha Chen, Heshan Fernando, Yiming Ying, Tianyi Chen
- Abstract要約: マルチオブジェクト学習(MOL)問題は、複数の学習基準や複数の学習タスクがある場合、機械学習の問題を発生させる。
最近の研究はMGDAやその変種などのMOLのための様々な動的重み付けアルゴリズムを開発しており、そこでは目的間の衝突を避けるための更新方向を見つけることが中心となっている。
本稿では,Mouble sample (MoDo)アルゴリズムを用いた多目的勾配法MGDAの新しい変種について検討し,動的重み付けに基づくMoDoの一般化性能について検討する。
- 参考スコア(独自算出の注目度): 31.833690705837856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-objective learning (MOL) problems often arise in emerging machine
learning problems when there are multiple learning criteria or multiple
learning tasks. Recent works have developed various dynamic weighting
algorithms for MOL such as MGDA and its variants, where the central idea is to
find an update direction that avoids conflicts among objectives. Albeit its
appealing intuition, empirical studies show that dynamic weighting methods may
not always outperform static ones. To understand this theory-practical gap, we
focus on a new stochastic variant of MGDA - the Multi-objective gradient with
Double sampling (MoDo) algorithm, and study the generalization performance of
the dynamic weighting-based MoDo and its interplay with optimization through
the lens of algorithm stability. Perhaps surprisingly, we find that the key
rationale behind MGDA -- updating along conflict-avoidant direction - may
hinder dynamic weighting algorithms from achieving the optimal ${\cal
O}(1/\sqrt{n})$ population risk, where $n$ is the number of training samples.
We further demonstrate the variability of dynamic weights on the three-way
trade-off among optimization, generalization, and conflict avoidance that is
unique in MOL.
- Abstract(参考訳): マルチオブジェクト学習(MOL)問題は、複数の学習基準や複数の学習タスクがある場合、機械学習の問題を発生させる。
最近の研究はMGDAやその変種などのMOLのための様々な動的重み付けアルゴリズムを開発しており、そこでは目的間の衝突を避けるための更新方向を見つけることが中心となっている。
直感的には魅力的だが、実験的な研究は動的重み付け法が常に静的な方法よりも優れているとは限らないことを示している。
この理論と実践のギャップを理解するため,我々はmgdaの新しい確率的変種である二重サンプリング(modo)アルゴリズムに着目し,動的重み付けに基づくmodoの一般化性能とアルゴリズム安定性のレンズによる最適化に関する研究を行った。
おそらく、MGDAの背後にある重要な理論的根拠 -- 矛盾回避方向に沿って更新する -- は、最適な${\cal O}(1/\sqrt{n})$集団リスクを達成するための動的重み付けアルゴリズムを妨げる可能性がある。
さらに,mol に特有の最適化,一般化,競合回避の3方向トレードオフにおける動的重みの変動性を示す。
関連論文リスト
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
正規化勾配差(NGDiff)アルゴリズムを導入し、目的間のトレードオフをよりよく制御できるようにする。
本研究では,TOFUおよびMUSEデータセットにおける最先端の未学習手法において,NGDiffの優れた性能を実証的に実証し,理論的解析を行った。
論文 参考訳(メタデータ) (2024-10-29T14:41:44Z) - On-the-fly Modulation for Balanced Multimodal Learning [53.616094855778954]
マルチモーダル学習は、異なるモーダルからの情報を統合することでモデル性能を向上させることが期待されている。
広く使われている共同トレーニング戦略は、不均衡で最適化されていないユニモーダル表現につながる。
そこで本研究では,OGM(On-the-fly Prediction Modulation)とOGM(On-the-fly Gradient Modulation)の戦略を提案する。
論文 参考訳(メタデータ) (2024-10-15T13:15:50Z) - Dynamic Adaptive Optimization for Effective Sentiment Analysis Fine-Tuning on Large Language Models [0.0]
大規模言語モデル(LLM)は、マルチタスク学習を利用して特定のタスクを同時に処理することで、感情分析の一般的なパラダイムとなっている。
動的適応最適化(DAO)モジュールを用いた新しいマルチタスク学習フレームワークを提案する。
この研究は、平均二乗誤差(MSE)と精度(ACC)を、以前の研究と比べてそれぞれ15.58%、1.24%改善した。
論文 参考訳(メタデータ) (2024-08-15T19:13:38Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
マルチオブジェクト強化学習(MORL)エージェントでは、意思決定行動の最適化を行う。
重みベクトル w でパラメータ化される線型効用関数の場合に焦点を当てる。
学習過程の異なる段階で最も有望な重みベクトルを効率的に探索する上信頼境界に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-05-01T09:34:42Z) - Multi-Objective Optimization for Sparse Deep Multi-Task Learning [0.0]
重み付きチェビシェフスキャラライゼーションを用いたディープニューラルネットワーク(DNN)のトレーニングのための多目的最適化アルゴリズムを提案する。
本研究の目的は,DNNモデルの持続可能性問題,特にDeep Multi-Taskモデルに焦点をあてることである。
論文 参考訳(メタデータ) (2023-08-23T16:42:27Z) - Mitigating Gradient Bias in Multi-objective Learning: A Provably Convergent Stochastic Approach [38.76462300149459]
我々は多目的勾配最適化のための多目的補正法(MoCo)を開発した。
本手法の特長は,非公正勾配を増大させることなく収束を保証できる点である。
論文 参考訳(メタデータ) (2022-10-23T05:54:26Z) - Multi-Task Learning on Networks [0.0]
マルチタスク学習コンテキストで発生する多目的最適化問題は、特定の特徴を持ち、アドホックな方法を必要とする。
この論文では、入力空間の解は、関数評価に含まれる知識をカプセル化した確率分布として表現される。
確率分布のこの空間では、ワッサーシュタイン距離によって与えられる計量が与えられ、モデルが目的関数に直接依存しないような新しいアルゴリズムMOEA/WSTを設計することができる。
論文 参考訳(メタデータ) (2021-12-07T09:13:10Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - MAML is a Noisy Contrastive Learner [72.04430033118426]
モデルに依存しないメタラーニング(MAML)は、今日では最も人気があり広く採用されているメタラーニングアルゴリズムの1つである。
我々は、MAMLの動作メカニズムに対する新たな視点を提供し、以下に示すように、MAMLは、教師付きコントラスト目的関数を用いたメタラーナーに類似している。
このような干渉を軽減するため, 単純だが効果的な手法であるゼロ化手法を提案する。
論文 参考訳(メタデータ) (2021-06-29T12:52:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。