Symmetry-Aware Robot Design with Structured Subgroups
- URL: http://arxiv.org/abs/2306.00036v1
- Date: Wed, 31 May 2023 08:57:03 GMT
- Title: Symmetry-Aware Robot Design with Structured Subgroups
- Authors: Heng Dong, Junyu Zhang, Tonghan Wang, Chongjie Zhang
- Abstract summary: We propose a Symmetry-Aware Robot Design framework that exploits the structure of the design space by incorporating symmetry searching into the robot design process.
Specifically, we represent symmetries with the subgroups of the dihedral group and search for the optimal symmetry in structured subgroups.
In this way, SARD can design efficient symmetric robots while covering the original design space, which is theoretically analyzed.
- Score: 31.422714467666637
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robot design aims at learning to create robots that can be easily controlled
and perform tasks efficiently. Previous works on robot design have proven its
ability to generate robots for various tasks. However, these works searched the
robots directly from the vast design space and ignored common structures,
resulting in abnormal robots and poor performance. To tackle this problem, we
propose a Symmetry-Aware Robot Design (SARD) framework that exploits the
structure of the design space by incorporating symmetry searching into the
robot design process. Specifically, we represent symmetries with the subgroups
of the dihedral group and search for the optimal symmetry in structured
subgroups. Then robots are designed under the searched symmetry. In this way,
SARD can design efficient symmetric robots while covering the original design
space, which is theoretically analyzed. We further empirically evaluate SARD on
various tasks, and the results show its superior efficiency and
generalizability.
Related papers
- Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction [52.12746368727368]
Differentiable simulation has become a powerful tool for system identification.
Our approach calibrates object properties by using information from the robot, without relying on data from the object itself.
We demonstrate the effectiveness of our method on a low-cost robotic platform.
arXiv Detail & Related papers (2024-10-04T20:48:38Z) - Structural Optimization of Lightweight Bipedal Robot via SERL [6.761861053481078]
This paper introduces the SERL (Structure Evolution Reinforcement Learning) algorithm, which combines reinforcement learning for locomotion tasks with evolution algorithms.
We successfully designed a bipedal robot named Wow Orin, where the optimal leg length are obtained through optimization based on body structure and motor torque.
arXiv Detail & Related papers (2024-08-28T08:34:05Z) - Unifying 3D Representation and Control of Diverse Robots with a Single Camera [48.279199537720714]
We introduce Neural Jacobian Fields, an architecture that autonomously learns to model and control robots from vision alone.
Our approach achieves accurate closed-loop control and recovers the causal dynamic structure of each robot.
arXiv Detail & Related papers (2024-07-11T17:55:49Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Leveraging Hyperbolic Embeddings for Coarse-to-Fine Robot Design [40.01142267374432]
Multi-cellular robot design aims to create robots comprised of numerous cells that can be efficiently controlled to perform diverse tasks.
Previous research has demonstrated the ability to generate robots for various tasks, but these approaches often optimize robots directly in the vast design space.
This paper presents a novel coarse-to-fine method for designing multi-cellular robots.
arXiv Detail & Related papers (2023-11-01T11:56:32Z) - GLSO: Grammar-guided Latent Space Optimization for Sample-efficient
Robot Design Automation [16.96128900256427]
We present Grammar-guided Latent Space Optimization (GLSO), a framework that transforms design automation into a low-dimensional continuous optimization problem.
In this work, we present a framework that transforms design automation into a low-dimensional continuous optimization problem by training a graph variational autoencoder (VAE) to learn a mapping between the graph-structured design space and a continuous latent space.
arXiv Detail & Related papers (2022-09-23T17:48:24Z) - Scale invariant robot behavior with fractals [1.593222804814135]
Self similar structures in nature often exhibit self similar behavior at different scales.
We show that there are robot designs that exhibit a desired behavior at a small size scale, and if copies of that robot are attached together to realize the same design at higher scales, those larger robots exhibit similar behavior.
arXiv Detail & Related papers (2021-03-08T16:27:07Z) - Machine Learning-Based Automated Design Space Exploration for Autonomous
Aerial Robots [55.056709056795206]
Building domain-specific architectures for autonomous aerial robots is challenging due to a lack of systematic methodology for designing onboard compute.
We introduce a novel performance model called the F-1 roofline to help architects understand how to build a balanced computing system.
To navigate the cyber-physical design space automatically, we subsequently introduce AutoPilot.
arXiv Detail & Related papers (2021-02-05T03:50:54Z) - Integrated Benchmarking and Design for Reproducible and Accessible
Evaluation of Robotic Agents [61.36681529571202]
We describe a new concept for reproducible robotics research that integrates development and benchmarking.
One of the central components of this setup is the Duckietown Autolab, a standardized setup that is itself relatively low-cost and reproducible.
We validate the system by analyzing the repeatability of experiments conducted using the infrastructure and show that there is low variance across different robot hardware and across different remote labs.
arXiv Detail & Related papers (2020-09-09T15:31:29Z) - Diversity-based Design Assist for Large Legged Robots [4.505477982701834]
We explore the design space of a class of large legged robots, which stand at around 2m tall and whose design and construction is not well-studied.
A novel robot encoding allows for bio-inspired features such as legs scaling along the length of the body.
arXiv Detail & Related papers (2020-04-17T03:59:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.