A roadmap for AI in robotics
- URL: http://arxiv.org/abs/2507.19975v1
- Date: Sat, 26 Jul 2025 15:18:28 GMT
- Title: A roadmap for AI in robotics
- Authors: Aude Billard, Alin Albu-Schaeffer, Michael Beetz, Wolfram Burgard, Peter Corke, Matei Ciocarlie, Ravinder Dahiya, Danica Kragic, Ken Goldberg, Yukie Nagai, Davide Scaramuzza,
- Abstract summary: We are witnessing growing excitement in robotics at the prospect of leveraging the potential of AI to tackle some of the outstanding barriers to the full deployment of robots in our daily lives.<n>This article offers an assessment of what AI for robotics has achieved since the 1990s and proposes a short- and medium-term research roadmap listing challenges and promises.
- Score: 55.87087746398059
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI technologies, including deep learning, large-language models have gone from one breakthrough to the other. As a result, we are witnessing growing excitement in robotics at the prospect of leveraging the potential of AI to tackle some of the outstanding barriers to the full deployment of robots in our daily lives. However, action and sensing in the physical world pose greater and different challenges than analysing data in isolation. As the development and application of AI in robotic products advances, it is important to reflect on which technologies, among the vast array of network architectures and learning models now available in the AI field, are most likely to be successfully applied to robots; how they can be adapted to specific robot designs, tasks, environments; which challenges must be overcome. This article offers an assessment of what AI for robotics has achieved since the 1990s and proposes a short- and medium-term research roadmap listing challenges and promises. These range from keeping up-to-date large datasets, representatives of a diversity of tasks robots may have to perform, and of environments they may encounter, to designing AI algorithms tailored specifically to robotics problems but generic enough to apply to a wide range of applications and transfer easily to a variety of robotic platforms. For robots to collaborate effectively with humans, they must predict human behavior without relying on bias-based profiling. Explainability and transparency in AI-driven robot control are not optional but essential for building trust, preventing misuse, and attributing responsibility in accidents. We close on what we view as the primary long-term challenges, that is, to design robots capable of lifelong learning, while guaranteeing safe deployment and usage, and sustainable computational costs.
Related papers
- One For All: LLM-based Heterogeneous Mission Planning in Precision Agriculture [2.9440788521375585]
We present a natural language (NL) robotic mission planner that enables non-specialists to control heterogeneous robots.<n>Our architecture seamlessly translates human language into intermediate descriptions that can be executed by different robotic platforms.<n>This work represents a significant step toward making robotic automation in precision agriculture more accessible to non-technical users.
arXiv Detail & Related papers (2025-06-11T18:45:44Z) - A Retrospective on the Robot Air Hockey Challenge: Benchmarking Robust, Reliable, and Safe Learning Techniques for Real-world Robotics [53.33976793493801]
We organized the Robot Air Hockey Challenge at the NeurIPS 2023 conference.
We focus on practical challenges in robotics, such as the sim-to-real gap, low-level control issues, safety problems, real-time requirements, and the limited availability of real-world data.
Results show that solutions combining learning-based approaches with prior knowledge outperform those relying solely on data when real-world deployment is challenging.
arXiv Detail & Related papers (2024-11-08T17:20:47Z) - $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
Legged robots are physically capable of navigating a diverse variety of environments and overcoming a wide range of obstructions.
Current learning methods often struggle with generalization to the long tail of unexpected situations without heavy human supervision.
We propose a system, VLM-Predictive Control (VLM-PC), combining two key components that we find to be crucial for eliciting on-the-fly, adaptive behavior selection.
arXiv Detail & Related papers (2024-07-02T21:00:30Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
We present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands.
Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning approach achieves superior performance when supported by robust low-level policies.
arXiv Detail & Related papers (2024-03-15T17:45:44Z) - Aligning Robot Representations with Humans [5.482532589225552]
Key question is how to best transfer knowledge learned in one environment to another, where shifting constraints and human preferences render adaptation challenging.
We postulate that because humans will be the ultimate evaluator of system success in the world, they are best suited to communicating the aspects of the tasks that matter to the robot.
We highlight three areas where we can use this approach to build interactive systems and offer future directions of work to better create advanced collaborative robots.
arXiv Detail & Related papers (2022-05-15T15:51:05Z) - Dual-Arm Adversarial Robot Learning [0.6091702876917281]
We propose dual-arm settings as platforms for robot learning.
We will discuss the potential benefits of this setup as well as the challenges and research directions that can be pursued.
arXiv Detail & Related papers (2021-10-15T12:51:57Z) - Auditing Robot Learning for Safety and Compliance during Deployment [4.742825811314168]
We study how best to audit robot learning algorithms for checking their compatibility with humans.
We believe that this is a challenging problem that will require efforts from the entire robot learning community.
arXiv Detail & Related papers (2021-10-12T02:40:11Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.