Additional Positive Enables Better Representation Learning for Medical
Images
- URL: http://arxiv.org/abs/2306.00112v1
- Date: Wed, 31 May 2023 18:37:02 GMT
- Title: Additional Positive Enables Better Representation Learning for Medical
Images
- Authors: Dewen Zeng, Yawen Wu, Xinrong Hu, Xiaowei Xu, Jingtong Hu, Yiyu Shi
- Abstract summary: This paper presents a new way to identify additional positive pairs for BYOL, a state-of-the-art (SOTA) self-supervised learning framework.
For each image, we select the most similar sample from other images as the additional positive and pull their features together with BYOL loss.
Experimental results on two public medical datasets demonstrate that the proposed method can improve the classification performance.
- Score: 17.787804928943057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a new way to identify additional positive pairs for BYOL,
a state-of-the-art (SOTA) self-supervised learning framework, to improve its
representation learning ability. Unlike conventional BYOL which relies on only
one positive pair generated by two augmented views of the same image, we argue
that information from different images with the same label can bring more
diversity and variations to the target features, thus benefiting representation
learning. To identify such pairs without any label, we investigate TracIn, an
instance-based and computationally efficient influence function, for BYOL
training. Specifically, TracIn is a gradient-based method that reveals the
impact of a training sample on a test sample in supervised learning. We extend
it to the self-supervised learning setting and propose an efficient batch-wise
per-sample gradient computation method to estimate the pairwise TracIn to
represent the similarity of samples in the mini-batch during training. For each
image, we select the most similar sample from other images as the additional
positive and pull their features together with BYOL loss. Experimental results
on two public medical datasets (i.e., ISIC 2019 and ChestX-ray) demonstrate
that the proposed method can improve the classification performance compared to
other competitive baselines in both semi-supervised and transfer learning
settings.
Related papers
- CKD: Contrastive Knowledge Distillation from A Sample-wise Perspective [48.99488315273868]
We present a contrastive knowledge distillation approach, which can be formulated as a sample-wise alignment problem with intra- and inter-sample constraints.
Our method minimizes logit differences within the same sample by considering their numerical values.
We conduct comprehensive experiments on three datasets including CIFAR-100, ImageNet-1K, and MS COCO.
arXiv Detail & Related papers (2024-04-22T11:52:40Z) - Decoupled Contrastive Learning for Long-Tailed Recognition [58.255966442426484]
Supervised Contrastive Loss (SCL) is popular in visual representation learning.
In the scenario of long-tailed recognition, where the number of samples in each class is imbalanced, treating two types of positive samples equally leads to the biased optimization for intra-category distance.
We propose a patch-based self distillation to transfer knowledge from head to tail classes to relieve the under-representation of tail classes.
arXiv Detail & Related papers (2024-03-10T09:46:28Z) - ProbMCL: Simple Probabilistic Contrastive Learning for Multi-label Visual Classification [16.415582577355536]
Multi-label image classification presents a challenging task in many domains, including computer vision and medical imaging.
Recent advancements have introduced graph-based and transformer-based methods to improve performance and capture label dependencies.
We propose Probabilistic Multi-label Contrastive Learning (ProbMCL), a novel framework to address these challenges.
arXiv Detail & Related papers (2024-01-02T22:15:20Z) - Improving GAN Training via Feature Space Shrinkage [69.98365478398593]
We propose AdaptiveMix, which shrinks regions of training data in the image representation space of the discriminator.
Considering it is intractable to directly bound feature space, we propose to construct hard samples and narrow down the feature distance between hard and easy samples.
The evaluation results demonstrate that our AdaptiveMix can facilitate the training of GANs and effectively improve the image quality of generated samples.
arXiv Detail & Related papers (2023-03-02T20:22:24Z) - Mix-up Self-Supervised Learning for Contrast-agnostic Applications [33.807005669824136]
We present the first mix-up self-supervised learning framework for contrast-agnostic applications.
We address the low variance across images based on cross-domain mix-up and build the pretext task based on image reconstruction and transparency prediction.
arXiv Detail & Related papers (2022-04-02T16:58:36Z) - Weakly Supervised Contrastive Learning [68.47096022526927]
We introduce a weakly supervised contrastive learning framework (WCL) to tackle this issue.
WCL achieves 65% and 72% ImageNet Top-1 Accuracy using ResNet50, which is even higher than SimCLRv2 with ResNet101.
arXiv Detail & Related papers (2021-10-10T12:03:52Z) - Beyond Single Instance Multi-view Unsupervised Representation Learning [21.449132256091662]
We impose more accurate instance discrimination capability by measuring the joint similarity between two randomly sampled instances.
We believe that learning joint similarity helps to improve the performance when encoded features are distributed more evenly in the latent space.
arXiv Detail & Related papers (2020-11-26T15:43:27Z) - Self-supervised Co-training for Video Representation Learning [103.69904379356413]
We investigate the benefit of adding semantic-class positives to instance-based Info Noise Contrastive Estimation training.
We propose a novel self-supervised co-training scheme to improve the popular infoNCE loss.
We evaluate the quality of the learnt representation on two different downstream tasks: action recognition and video retrieval.
arXiv Detail & Related papers (2020-10-19T17:59:01Z) - CSI: Novelty Detection via Contrastive Learning on Distributionally
Shifted Instances [77.28192419848901]
We propose a simple, yet effective method named contrasting shifted instances (CSI)
In addition to contrasting a given sample with other instances as in conventional contrastive learning methods, our training scheme contrasts the sample with distributionally-shifted augmentations of itself.
Our experiments demonstrate the superiority of our method under various novelty detection scenarios.
arXiv Detail & Related papers (2020-07-16T08:32:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.