論文の概要: Multilingual Multi-Figurative Language Detection
- arxiv url: http://arxiv.org/abs/2306.00121v1
- Date: Wed, 31 May 2023 18:52:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 19:46:33.268205
- Title: Multilingual Multi-Figurative Language Detection
- Title(参考訳): 多言語多形言語検出
- Authors: Huiyuan Lai, Antonio Toral, Malvina Nissim
- Abstract要約: 比喩的言語理解は多言語環境では 非常に過小評価されています
我々は,多言語多言語言語モデリングを導入し,文レベル図形言語検出のためのベンチマークを提供する。
テンプレートに基づく即時学習に基づく図形言語検出のためのフレームワークを開発する。
- 参考スコア(独自算出の注目度): 14.799109368073548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Figures of speech help people express abstract concepts and evoke stronger
emotions than literal expressions, thereby making texts more creative and
engaging. Due to its pervasive and fundamental character, figurative language
understanding has been addressed in Natural Language Processing, but it's
highly understudied in a multilingual setting and when considering more than
one figure of speech at the same time. To bridge this gap, we introduce
multilingual multi-figurative language modelling, and provide a benchmark for
sentence-level figurative language detection, covering three common figures of
speech and seven languages. Specifically, we develop a framework for figurative
language detection based on template-based prompt learning. In so doing, we
unify multiple detection tasks that are interrelated across multiple figures of
speech and languages, without requiring task- or language-specific modules.
Experimental results show that our framework outperforms several strong
baselines and may serve as a blueprint for the joint modelling of other
interrelated tasks.
- Abstract(参考訳): 言葉のフィギュアは、抽象概念を表現し、リテラル表現よりも強い感情を呼び起こし、テキストをより創造的で魅力的なものにする。
その広範で基本的な性格から、自然言語処理ではフィギュラティブ言語理解が取り組まれてきたが、多言語環境では、同時に複数の音声を同時に検討する場合には、非常に未熟である。
このギャップを埋めるために,多言語多形言語モデルを導入し,文レベルのフィギュラブル言語検出のためのベンチマークを提供し,3つの共通表現と7つの言語をカバーする。
具体的には,テンプレートに基づくプロンプト学習に基づく言語認識のためのフレームワークを開発した。
このようにして、タスク固有のモジュールや言語固有のモジュールを必要とせずに、複数の言語や言語にまたがる複数の検出タスクを統一する。
実験の結果,我々のフレームワークはいくつかの強いベースラインより優れており,他の相互関連タスクの協調モデリングの青写真として機能する可能性が示唆された。
関連論文リスト
- Large Language Models Share Representations of Latent Grammatical Concepts Across Typologically Diverse Languages [15.203789021094982]
大規模言語モデル(LLM)では、複数の言語がどのように学習され、エンコードされているか?
Llama-3-8BとAya-23-8Bでスパースオートエンコーダを訓練し、抽象文法の概念が多くの言語で共有される特徴方向に符号化されることを実証する。
論文 参考訳(メタデータ) (2025-01-10T21:18:21Z) - Exploring syntactic information in sentence embeddings through multilingual subject-verb agreement [1.4335183427838039]
我々は,特定の特性を持つ大規模でキュレートされた合成データを開発するためのアプローチを採っている。
我々は、ブラックバード言語行列(Blackbird Language Matrices)と呼ばれる新しい複数選択タスクとデータセットを使用して、特定の文法構造現象に焦点を当てる。
多言語テキストを一貫した方法で訓練したにもかかわらず、多言語事前学習言語モデルには言語固有の違いがあることが示される。
論文 参考訳(メタデータ) (2024-09-10T14:58:55Z) - Tokenization Impacts Multilingual Language Modeling: Assessing
Vocabulary Allocation and Overlap Across Languages [3.716965622352967]
サブワードトークン化器で観測される語彙表現と語彙重複の質を評価するための新しい基準を提案する。
以上の結果から,言語間の語彙の重複は,特定の下流課題に支障を来す可能性があることが示唆された。
論文 参考訳(メタデータ) (2023-05-26T18:06:49Z) - Multilingual Speech Emotion Recognition With Multi-Gating Mechanism and
Neural Architecture Search [15.51730246937201]
SERは、音声をHappy、Angry、Fear、Disgust、Neutralなどの感情カテゴリーに分類する。
本稿では,複数の事前学習された音声モデルから感情情報を抽出する言語特化モデルを提案する。
我々のモデルは、ドイツ語では3%、フランス語では14.3%の精度で最先端の精度を上げる。
論文 参考訳(メタデータ) (2022-10-31T19:55:33Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
多言語事前学習モデルから言語表現を生成し、言語分析を行う。
すべての対象言語を複数のグループにクラスタリングし、表現のスプラックバンドとして各グループに名前を付ける。
言語間ベンチマークで実験を行い、強いベースラインと比較して大幅な改善が達成された。
論文 参考訳(メタデータ) (2021-09-01T09:32:06Z) - Specializing Multilingual Language Models: An Empirical Study [50.7526245872855]
事前訓練された多言語モデルからの文脈化語表現は、自然言語タスクに対処するデファクトスタンダードとなっている。
これらのモデルではまれに、あるいは一度も見られない言語では、そのようなモデルを直接使用すると、最適な表現やデータの使用につながることが多い。
論文 参考訳(メタデータ) (2021-06-16T18:13:55Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
本稿では, AM2iCo, Adversarial and Multilingual Meaning in Contextを提案する。
言語間文脈における単語の意味の同一性を理解するために、最先端(SotA)表現モデルを忠実に評価することを目的としている。
その結果、現在のSotAプリトレーニングエンコーダは人間のパフォーマンスにかなり遅れていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T20:23:45Z) - Are Multilingual Models Effective in Code-Switching? [57.78477547424949]
多言語モデルの有効性を検討し,複合言語設定の能力と適応性について検討する。
この結果から,事前学習した多言語モデルでは,コードスイッチングにおける高品質な表現が必ずしも保証されないことが示唆された。
論文 参考訳(メタデータ) (2021-03-24T16:20:02Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
特異ベクトル標準相関解析を用いて、各情報源からどのような情報が誘導されるかを調べる。
我々の表現は類型学を組み込み、言語関係と相関関係を強化する。
次に、多言語機械翻訳のための多視点言語ベクトル空間を利用して、競合する全体的な翻訳精度を実現する。
論文 参考訳(メタデータ) (2020-04-30T16:25:39Z) - Learning to Scale Multilingual Representations for Vision-Language Tasks [51.27839182889422]
SMALRの有効性は、これまでビジョン言語タスクでサポートされた2倍以上の10の多言語で実証されている。
単語の埋め込み手法と比較して,訓練パラメータの1/5以下で,複数言語による画像文検索と先行作業の3~4%の性能評価を行った。
論文 参考訳(メタデータ) (2020-04-09T01:03:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。