論文の概要: Pre-Trained Language-Meaning Models for Multilingual Parsing and
Generation
- arxiv url: http://arxiv.org/abs/2306.00124v1
- Date: Wed, 31 May 2023 19:00:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 19:46:50.081899
- Title: Pre-Trained Language-Meaning Models for Multilingual Parsing and
Generation
- Title(参考訳): 多言語構文解析・生成のための事前学習言語意味モデル
- Authors: Chunliu Wang, Huiyuan Lai, Malvina Nissim, Johan Bos
- Abstract要約: 談話表現構造(DRS)に基づく多言語事前学習言語意味モデルを導入する。
DRSは言語中立であるため、非英語タスクの性能向上のために言語間移動学習が採用されている。
自動評価の結果,本手法は多言語DSS解析とDSS-to-text生成の両タスクにおいて,最高の性能を達成できることが示唆された。
- 参考スコア(独自算出の注目度): 14.309869321407522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-trained language models (PLMs) have achieved great success in NLP and
have recently been used for tasks in computational semantics. However, these
tasks do not fully benefit from PLMs since meaning representations are not
explicitly included in the pre-training stage. We introduce multilingual
pre-trained language-meaning models based on Discourse Representation
Structures (DRSs), including meaning representations besides natural language
texts in the same model, and design a new strategy to reduce the gap between
the pre-training and fine-tuning objectives. Since DRSs are language neutral,
cross-lingual transfer learning is adopted to further improve the performance
of non-English tasks. Automatic evaluation results show that our approach
achieves the best performance on both the multilingual DRS parsing and
DRS-to-text generation tasks. Correlation analysis between automatic metrics
and human judgements on the generation task further validates the effectiveness
of our model. Human inspection reveals that out-of-vocabulary tokens are the
main cause of erroneous results.
- Abstract(参考訳): プレトレーニング言語モデル(PLM)はNLPにおいて大きな成功を収め、最近は計算意味論のタスクに使われている。
しかしながら、これらのタスクは、事前学習段階に表現が明示的に含まれていないため、PLMの恩恵を完全には受けない。
対話表現構造(DRS)に基づく多言語事前学習型言語意味モデルを導入し、同じモデルにおける自然言語テキスト以外の意味表現を含め、事前学習対象と微調整対象とのギャップを減らすための新しい戦略を設計する。
DRSは言語中立であるため、非英語タスクの性能向上のために言語間移動学習が採用されている。
自動評価の結果,多言語drs解析とdrs-to-text生成タスクの両方において,最良性能が得られた。
自動測定値と生成課題における人間の判断との相関分析は, モデルの有効性をさらに検証する。
人間の検査により、語彙外トークンが誤った結果の主な原因であることが判明した。
関連論文リスト
- MACT: Model-Agnostic Cross-Lingual Training for Discourse Representation Structure Parsing [4.536003573070846]
意味表現解析モデルのための言語間学習戦略を導入する。
事前訓練された言語モデルにエンコードされた言語間のアライメントを利用する。
実験では、英語、ドイツ語、イタリア語、オランダ語におけるDRS節とグラフ解析の大幅な改善が示されている。
論文 参考訳(メタデータ) (2024-06-03T07:02:57Z) - Self-supervised Adaptive Pre-training of Multilingual Speech Models for
Language and Dialect Identification [19.893213508284813]
目標領域や下流タスクの言語に事前学習モデルを適用するために,自己教師付き適応型事前学習を提案する。
SPTはFLEURSベンチマークのXLSR性能を向上し、表現不足言語では40.1%まで向上することを示した。
論文 参考訳(メタデータ) (2023-12-12T14:58:08Z) - Bridging the Gap Between Training and Inference of Bayesian Controllable
Language Models [58.990214815032495]
大規模事前学習型言語モデルは、自然言語生成タスクにおいて大きな成功を収めている。
BCLMは制御可能な言語生成において効率的であることが示されている。
本稿では,ミスマッチ問題を少ない計算コストで軽減する制御可能な言語生成のための"Gemini Discriminator"を提案する。
論文 参考訳(メタデータ) (2022-06-11T12:52:32Z) - Bridging the Gap between Language Models and Cross-Lingual Sequence
Labeling [101.74165219364264]
大規模言語間事前学習言語モデル (xPLM) は、言語間シーケンスラベリングタスクにおいて有効であることを示す。
大きな成功にもかかわらず、事前学習と微調整の段階の間には訓練対象のギャップがあるという経験的観察を描いている。
本稿では,まず,言語間インフォーマティブ・スパン・マスキング(CLISM)と呼ばれるxSLのための事前学習タスクを設計し,目的のギャップを解消する。
第2に、コントラスト学習を利用して入力並列表現間の一貫性を促進するContrAstive-Consistency Regularization (CACR)を提案する。
論文 参考訳(メタデータ) (2022-04-11T15:55:20Z) - AStitchInLanguageModels: Dataset and Methods for the Exploration of
Idiomaticity in Pre-Trained Language Models [7.386862225828819]
本研究は、MWEを含む自然発生文のデータセットを、細かな意味の集合に手作業で分類する。
我々は,このデータセットを,idiomを含む文の表現生成における言語モデルの有効性と,idiomを用いた言語モデルの有効性を検証するために,2つのタスクで使用する。
論文 参考訳(メタデータ) (2021-09-09T16:53:17Z) - Cross-lingual Transferring of Pre-trained Contextualized Language Models [73.97131976850424]
本稿では,PRLMのための新しい言語間モデル転送フレームワークTreLMを提案する。
シンボルの順序と言語間のシーケンス長の差に対処するため,中間的なTRILayer構造を提案する。
提案手法は,スクラッチから学習した言語モデルに対して,性能と効率の両面で,限られたデータで著しく優れることを示す。
論文 参考訳(メタデータ) (2021-07-27T06:51:13Z) - Evaluating Document Coherence Modelling [37.287725949616934]
英語文侵入検出タスクにおけるプリトレーニング済みLMの広い範囲の性能を検討する。
実験の結果,事前学習したLMはドメイン内評価において顕著に機能するが,クロスドメイン設定の大幅な低下を経験することがわかった。
論文 参考訳(メタデータ) (2021-03-18T10:05:06Z) - SLM: Learning a Discourse Language Representation with Sentence
Unshuffling [53.42814722621715]
談話言語表現を学習するための新しい事前学習目的である文レベル言語モデリングを導入する。
本モデルでは,この特徴により,従来のBERTの性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2020-10-30T13:33:41Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - Exploring Fine-tuning Techniques for Pre-trained Cross-lingual Models
via Continual Learning [74.25168207651376]
訓練済みの言語モデルから下流の言語間タスクへの微調整は、有望な結果を示している。
ダウンストリームタスクに微調整する場合、継続学習を活用して、事前学習したモデルの言語間能力を維持する。
提案手法は、ゼロショット言語間タグ付けや名前付きエンティティ認識タスクにおいて、他の微調整ベースラインよりも優れた性能を実現する。
論文 参考訳(メタデータ) (2020-04-29T14:07:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。