Reducing circuit depth with qubitwise diagonalization
- URL: http://arxiv.org/abs/2306.00170v3
- Date: Tue, 19 Dec 2023 20:42:36 GMT
- Title: Reducing circuit depth with qubitwise diagonalization
- Authors: Edison M. Murairi and Michael J. Cervia
- Abstract summary: We propose an algorithm yielding quantum circuits with depths $O(n log r)$ diagonalizing $n$-qubit operators generated by $r$ Pauli operators.
We observe that our algorithm performs favorably in producing quantum circuits diagonalizing randomly generated Hamiltonians as well as molecular Hamiltonians with short depths and low two-qubit gate counts.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A variety of quantum algorithms employ Pauli operators as a convenient basis
for studying the spectrum or evolution of Hamiltonians or measuring multi-body
observables. One strategy to reduce circuit depth in such algorithms involves
simultaneous diagonalization of Pauli operators generating unitary evolution
operators or observables of interest. We propose an algorithm yielding quantum
circuits with depths $O(n \log r)$ diagonalizing $n$-qubit operators generated
by $r$ Pauli operators. Moreover, as our algorithm iteratively diagonalizes all
operators on at least one qubit per step, it is well suited to maintain low
circuit depth even on hardware with limited qubit connectivity. We observe that
our algorithm performs favorably in producing quantum circuits diagonalizing
randomly generated Hamiltonians as well as molecular Hamiltonians with short
depths and low two-qubit gate counts.
Related papers
- Optimization and Synthesis of Quantum Circuits with Global Gates [44.99833362998488]
We use global interactions, such as the Global Molmer-Sorensen gate present in ion trap hardware, to optimize and synthesize quantum circuits.<n>The algorithm is based on the ZX-calculus and uses a specialized circuit extraction routine that groups entangling gates into Global MolmerSorensen gates.<n>We benchmark the algorithm in a variety of circuits, and show how it improves their performance under state-of-the-art hardware considerations.
arXiv Detail & Related papers (2025-07-28T10:25:31Z) - Distributed quantum logic algorithm [0.0]
This work examines a method for reducing circuit depth by introducing auxiliary qubits to enable parallel gate execution.
We show that any circuit on $n$ qubits with depth $Oleft(M n2right)$, where $M = M(n)$ is some function of $n$, can be transformed into a circuit with depth $Oleft(log_2(M) n2right)$ operating on $Oleft(M nright)$ qubits.
arXiv Detail & Related papers (2024-11-18T19:08:07Z) - Learning shallow quantum circuits with many-qubit gates [1.879968161594709]
We present the first computationally-efficient algorithm for average-case learning of quantum circuits with many-qubit gates.
We show that the learned unitary can be efficiently synthesized in poly-logarithmic depth.
arXiv Detail & Related papers (2024-10-22T04:48:36Z) - Classically estimating observables of noiseless quantum circuits [36.688706661620905]
We present a classical algorithm for estimating expectation values of arbitrary observables on most quantum circuits.
For non-classically-simulable input states or observables, the expectation values can be estimated by augmenting our algorithm with classical shadows of the relevant state or observable.
arXiv Detail & Related papers (2024-09-03T08:44:33Z) - Linear Circuit Synthesis using Weighted Steiner Trees [45.11082946405984]
CNOT circuits are a common building block of general quantum circuits.
This article presents state-of-the-art algorithms for optimizing the number of CNOT gates.
A simulated evaluation shows that the suggested is almost always beneficial and reduces the number of CNOT gates by up to 10%.
arXiv Detail & Related papers (2024-08-07T19:51:22Z) - Purely quantum algorithms for calculating determinant and inverse of matrix and solving linear algebraic systems [43.53835128052666]
We propose quantum algorithms for the computation of the determinant and inverse of an $(N-1) times (N-1)$ matrix.
This approach is a straightforward modification of the existing algorithm for determining the determinant of an $N times N$ matrix.
We provide suitable circuit designs for all three algorithms, each estimated to require $O(N log N)$ in terms of space.
arXiv Detail & Related papers (2024-01-29T23:23:27Z) - A two-circuit approach to reducing quantum resources for the quantum lattice Boltzmann method [41.66129197681683]
Current quantum algorithms for solving CFD problems use a single quantum circuit and, in some cases, lattice-based methods.
We introduce the a novel multiple circuits algorithm that makes use of a quantum lattice Boltzmann method (QLBM)
The problem is cast as a stream function--vorticity formulation of the 2D Navier-Stokes equations and verified and tested on a 2D lid-driven cavity flow.
arXiv Detail & Related papers (2024-01-20T15:32:01Z) - Automatic Depth-Optimized Quantum Circuit Synthesis for Diagonal Unitary
Matrices with Asymptotically Optimal Gate Count [9.194399933498323]
It is of great importance to optimize the depth/gate-count when designing quantum circuits for specific tasks.
In this paper, we propose a depth-optimized synthesis algorithm that automatically produces a quantum circuit for any given diagonal unitary matrix.
arXiv Detail & Related papers (2022-12-02T06:58:26Z) - Linear-depth quantum circuits for multiqubit controlled gates [3.0001636668817606]
We present a systematic procedure to decompose multiqubit controlled unitary gates.
We show the advantage of our algorithm with proof-of-principle experiments on the IBM quantum cloud platform.
arXiv Detail & Related papers (2022-03-22T16:57:59Z) - Hardware-Tailored Diagonalization Circuits [0.5922390405022251]
We introduce a theoretical framework for constructing hardware-tailored diagonalization circuits.
Our framework establishes a systematic and highly flexible procedure for tailoring diagonalization circuits with ultra-low gate counts.
We experimentally demonstrate that HT circuits can improve the efficiency of estimating expectation values with cloud-based quantum computers.
arXiv Detail & Related papers (2022-03-07T19:00:01Z) - Quantum algorithms for grid-based variational time evolution [36.136619420474766]
We propose a variational quantum algorithm for performing quantum dynamics in first quantization.
Our simulations exhibit the previously observed numerical instabilities of variational time propagation approaches.
arXiv Detail & Related papers (2022-03-04T19:00:45Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Efficient Algorithms for Causal Order Discovery in Quantum Networks [44.356294905844834]
Given black-box access to the input and output systems, we develop the first efficient quantum causal order discovery algorithm.
We model the causal order with quantum combs, and our algorithms output the order of inputs and outputs that the given process is compatible with.
Our algorithms will provide efficient ways to detect and optimize available transmission paths in quantum communication networks.
arXiv Detail & Related papers (2020-12-03T07:12:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.