Linear-depth quantum circuits for multiqubit controlled gates
- URL: http://arxiv.org/abs/2203.11882v2
- Date: Tue, 4 Oct 2022 22:40:05 GMT
- Title: Linear-depth quantum circuits for multiqubit controlled gates
- Authors: Adenilton J. da Silva and Daniel K. Park
- Abstract summary: We present a systematic procedure to decompose multiqubit controlled unitary gates.
We show the advantage of our algorithm with proof-of-principle experiments on the IBM quantum cloud platform.
- Score: 3.0001636668817606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum circuit depth minimization is critical for practical applications of
circuit-based quantum computation. In this work, we present a systematic
procedure to decompose multiqubit controlled unitary gates, which is essential
in many quantum algorithms, to controlled-NOT and single-qubit gates with which
the quantum circuit depth only increases linearly with the number of control
qubits. Our algorithm does not require any ancillary qubits and achieves a
quadratic reduction of the circuit depth against known methods. We show the
advantage of our algorithm with proof-of-principle experiments on the IBM
quantum cloud platform.
Related papers
- Quantum Multiplexer Simplification for State Preparation [0.7270112855088837]
We propose an algorithm that detects whether a given quantum state can be factored into substates.
The simplification is done by eliminating controls of quantum multiplexers.
Considering efficiency in terms of depth and number of CNOT gates, our method is competitive with the methods in the literature.
arXiv Detail & Related papers (2024-09-09T13:53:02Z) - Robust Implementation of Discrete-time Quantum Walks in Any Finite-dimensional Quantum System [2.646968944595457]
discrete-time quantum walk (DTQW) model one of most suitable choices for circuit implementation.
In this paper, we have successfully cut down the circuit cost concerning gate count and circuit depth by half.
For the engineering excellence of our proposed approach, we implement DTQW in any finite-dimensional quantum system with akin efficiency.
arXiv Detail & Related papers (2024-08-01T13:07:13Z) - Lightcone Bounds for Quantum Circuit Mapping via Uncomplexity [1.0360348400670518]
We show that a minimal SWAP-gate count for executing a quantum circuit on a device emerges via the minimization of the distance between quantum states.
This work constitutes the first use of quantum circuit uncomplexity to practically-relevant quantum computing.
arXiv Detail & Related papers (2024-02-01T10:32:05Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Initial-State Dependent Optimization of Controlled Gate Operations with
Quantum Computer [1.2019888796331233]
We introduce a new circuit called AQCEL, which aims to remove redundant controlled operations from controlled gates.
As a benchmark, the AQCEL is deployed on a quantum algorithm designed to model final state radiation in high energy physics.
We have demonstrated that the AQCEL-optimized circuit can produce equivalent final states with much smaller number of gates.
arXiv Detail & Related papers (2022-09-06T09:19:07Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Gaussian initializations help deep variational quantum circuits escape
from the barren plateau [87.04438831673063]
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years.
However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number.
This result leads to a general belief that deep quantum circuits will not be feasible for practical tasks.
arXiv Detail & Related papers (2022-03-17T15:06:40Z) - Efficient realization of quantum algorithms with qudits [0.70224924046445]
We propose a technique for an efficient implementation of quantum algorithms with multilevel quantum systems (qudits)
Our method uses a transpilation of a circuit in the standard qubit form, which depends on the parameters of a qudit-based processor.
We provide an explicit scheme of transpiling qubit circuits into sequences of single-qudit and two-qudit gates taken from a particular universal set.
arXiv Detail & Related papers (2021-11-08T11:09:37Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.