Building Manufacturing Deep Learning Models with Minimal and Imbalanced
Training Data Using Domain Adaptation and Data Augmentation
- URL: http://arxiv.org/abs/2306.00202v1
- Date: Wed, 31 May 2023 21:45:34 GMT
- Title: Building Manufacturing Deep Learning Models with Minimal and Imbalanced
Training Data Using Domain Adaptation and Data Augmentation
- Authors: Adrian Shuai Li, Elisa Bertino, Rih-Teng Wu, Ting-Yan Wu
- Abstract summary: We propose a novel domain adaptation (DA) approach to address the problem of labeled training data scarcity for a target learning task.
Our approach works for scenarios where the source dataset and the dataset available for the target learning task have same or different feature spaces.
We evaluate our combined approach using image data for wafer defect prediction.
- Score: 15.333573151694576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning (DL) techniques are highly effective for defect detection from
images. Training DL classification models, however, requires vast amounts of
labeled data which is often expensive to collect. In many cases, not only the
available training data is limited but may also imbalanced. In this paper, we
propose a novel domain adaptation (DA) approach to address the problem of
labeled training data scarcity for a target learning task by transferring
knowledge gained from an existing source dataset used for a similar learning
task. Our approach works for scenarios where the source dataset and the dataset
available for the target learning task have same or different feature spaces.
We combine our DA approach with an autoencoder-based data augmentation approach
to address the problem of imbalanced target datasets. We evaluate our combined
approach using image data for wafer defect prediction. The experiments show its
superior performance against other algorithms when the number of labeled
samples in the target dataset is significantly small and the target dataset is
imbalanced.
Related papers
- Automatic Dataset Construction (ADC): Sample Collection, Data Curation, and Beyond [38.89457061559469]
We propose an innovative methodology that automates dataset creation with negligible cost and high efficiency.
We provide open-source software that incorporates existing methods for label error detection, robust learning under noisy and biased data.
We design three benchmark datasets focused on label noise detection, label noise learning, and class-imbalanced learning.
arXiv Detail & Related papers (2024-08-21T04:45:12Z) - Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification [34.37262622415682]
We propose a new adaptation framework called Data Adaptive Traceback.
Specifically, we utilize a zero-shot-based method to extract the most downstream task-related subset of the pre-training data.
We adopt a pseudo-label-based semi-supervised technique to reuse the pre-training images and a vision-language contrastive learning method to address the confirmation bias issue in semi-supervised learning.
arXiv Detail & Related papers (2024-07-11T18:01:58Z) - Retrieval-Augmented Data Augmentation for Low-Resource Domain Tasks [66.87070857705994]
In low-resource settings, the amount of seed data samples to use for data augmentation is very small.
We propose a novel method that augments training data by incorporating a wealth of examples from other datasets.
This approach can ensure that the generated data is not only relevant but also more diverse than what could be achieved using the limited seed data alone.
arXiv Detail & Related papers (2024-02-21T02:45:46Z) - Group Distributionally Robust Dataset Distillation with Risk
Minimization [18.07189444450016]
We introduce an algorithm that combines clustering with the minimization of a risk measure on the loss to conduct DD.
We demonstrate its effective generalization and robustness across subgroups through numerical experiments.
arXiv Detail & Related papers (2024-02-07T09:03:04Z) - TIDo: Source-free Task Incremental Learning in Non-stationary
Environments [0.0]
Updating a model-based agent to learn new target tasks requires us to store past training data.
Few-shot task incremental learning methods overcome the limitation of labeled target datasets.
We propose a one-shot task incremental learning approach that can adapt to non-stationary source and target tasks.
arXiv Detail & Related papers (2023-01-28T02:19:45Z) - Towards Robust Dataset Learning [90.2590325441068]
We propose a principled, tri-level optimization to formulate the robust dataset learning problem.
Under an abstraction model that characterizes robust vs. non-robust features, the proposed method provably learns a robust dataset.
arXiv Detail & Related papers (2022-11-19T17:06:10Z) - Domain Adaptation Principal Component Analysis: base linear method for
learning with out-of-distribution data [55.41644538483948]
Domain adaptation is a popular paradigm in modern machine learning.
We present a method called Domain Adaptation Principal Component Analysis (DAPCA)
DAPCA finds a linear reduced data representation useful for solving the domain adaptation task.
arXiv Detail & Related papers (2022-08-28T21:10:56Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Weak Adaptation Learning -- Addressing Cross-domain Data Insufficiency
with Weak Annotator [2.8672054847109134]
In some target problem domains, there are not many data samples available, which could hinder the learning process.
We propose a weak adaptation learning (WAL) approach that leverages unlabeled data from a similar source domain.
Our experiments demonstrate the effectiveness of our approach in learning an accurate classifier with limited labeled data in the target domain.
arXiv Detail & Related papers (2021-02-15T06:19:25Z) - DeGAN : Data-Enriching GAN for Retrieving Representative Samples from a
Trained Classifier [58.979104709647295]
We bridge the gap between the abundance of available data and lack of relevant data, for the future learning tasks of a trained network.
We use the available data, that may be an imbalanced subset of the original training dataset, or a related domain dataset, to retrieve representative samples.
We demonstrate that data from a related domain can be leveraged to achieve state-of-the-art performance.
arXiv Detail & Related papers (2019-12-27T02:05:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.