Automatic Dataset Construction (ADC): Sample Collection, Data Curation, and Beyond
- URL: http://arxiv.org/abs/2408.11338v1
- Date: Wed, 21 Aug 2024 04:45:12 GMT
- Title: Automatic Dataset Construction (ADC): Sample Collection, Data Curation, and Beyond
- Authors: Minghao Liu, Zonglin Di, Jiaheng Wei, Zhongruo Wang, Hengxiang Zhang, Ruixuan Xiao, Haoyu Wang, Jinlong Pang, Hao Chen, Ankit Shah, Hongxin Wei, Xinlei He, Zhaowei Zhao, Haobo Wang, Lei Feng, Jindong Wang, James Davis, Yang Liu,
- Abstract summary: We propose an innovative methodology that automates dataset creation with negligible cost and high efficiency.
We provide open-source software that incorporates existing methods for label error detection, robust learning under noisy and biased data.
We design three benchmark datasets focused on label noise detection, label noise learning, and class-imbalanced learning.
- Score: 38.89457061559469
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-scale data collection is essential for developing personalized training data, mitigating the shortage of training data, and fine-tuning specialized models. However, creating high-quality datasets quickly and accurately remains a challenge due to annotation errors, the substantial time and costs associated with human labor. To address these issues, we propose Automatic Dataset Construction (ADC), an innovative methodology that automates dataset creation with negligible cost and high efficiency. Taking the image classification task as a starting point, ADC leverages LLMs for the detailed class design and code generation to collect relevant samples via search engines, significantly reducing the need for manual annotation and speeding up the data generation process. Despite these advantages, ADC also encounters real-world challenges such as label errors (label noise) and imbalanced data distributions (label bias). We provide open-source software that incorporates existing methods for label error detection, robust learning under noisy and biased data, ensuring a higher-quality training data and more robust model training procedure. Furthermore, we design three benchmark datasets focused on label noise detection, label noise learning, and class-imbalanced learning. These datasets are vital because there are few existing datasets specifically for label noise detection, despite its importance. Finally, we evaluate the performance of existing popular methods on these datasets, thereby facilitating further research in the field.
Related papers
- Data Valuation with Gradient Similarity [1.997283751398032]
Data Valuation algorithms quantify the value of each sample in a dataset based on its contribution or importance to a given predictive task.
We present a simple alternative to existing methods, termed Data Valuation with Gradient Similarity (DVGS)
Our approach has the ability to rapidly and accurately identify low-quality data, which can reduce the need for expert knowledge and manual intervention in data cleaning tasks.
arXiv Detail & Related papers (2024-05-13T22:10:00Z) - Incremental Self-training for Semi-supervised Learning [56.57057576885672]
IST is simple yet effective and fits existing self-training-based semi-supervised learning methods.
We verify the proposed IST on five datasets and two types of backbone, effectively improving the recognition accuracy and learning speed.
arXiv Detail & Related papers (2024-04-14T05:02:00Z) - Stochastic Amortization: A Unified Approach to Accelerate Feature and Data Attribution [62.71425232332837]
We show that training amortized models with noisy labels is inexpensive and surprisingly effective.
This approach significantly accelerates several feature attribution and data valuation methods, often yielding an order of magnitude speedup over existing approaches.
arXiv Detail & Related papers (2024-01-29T03:42:37Z) - Building Manufacturing Deep Learning Models with Minimal and Imbalanced
Training Data Using Domain Adaptation and Data Augmentation [15.333573151694576]
We propose a novel domain adaptation (DA) approach to address the problem of labeled training data scarcity for a target learning task.
Our approach works for scenarios where the source dataset and the dataset available for the target learning task have same or different feature spaces.
We evaluate our combined approach using image data for wafer defect prediction.
arXiv Detail & Related papers (2023-05-31T21:45:34Z) - STAR: Boosting Low-Resource Information Extraction by Structure-to-Text
Data Generation with Large Language Models [56.27786433792638]
STAR is a data generation method that leverages Large Language Models (LLMs) to synthesize data instances.
We design fine-grained step-by-step instructions to obtain the initial data instances.
Our experiments show that the data generated by STAR significantly improve the performance of low-resource event extraction and relation extraction tasks.
arXiv Detail & Related papers (2023-05-24T12:15:19Z) - A Benchmark Generative Probabilistic Model for Weak Supervised Learning [2.0257616108612373]
Weak Supervised Learning approaches have been developed to alleviate the annotation burden.
We show that latent variable models (PLVMs) achieve state-of-the-art performance across four datasets.
arXiv Detail & Related papers (2023-03-31T07:06:24Z) - Representation Learning for the Automatic Indexing of Sound Effects
Libraries [79.68916470119743]
We show that a task-specific but dataset-independent representation can successfully address data issues such as class imbalance, inconsistent class labels, and insufficient dataset size.
Detailed experimental results show the impact of metric learning approaches and different cross-dataset training methods on representational effectiveness.
arXiv Detail & Related papers (2022-08-18T23:46:13Z) - Fix your Models by Fixing your Datasets [0.6058427379240697]
Current machine learning tools lack streamlined processes for improving the data quality.
We introduce a systematic framework for finding noisy or mislabelled samples in the dataset.
We demonstrate the efficacy of our framework on public as well as private enterprise datasets of two Fortune 500 companies.
arXiv Detail & Related papers (2021-12-15T02:41:50Z) - Self-Tuning for Data-Efficient Deep Learning [75.34320911480008]
Self-Tuning is a novel approach to enable data-efficient deep learning.
It unifies the exploration of labeled and unlabeled data and the transfer of a pre-trained model.
It outperforms its SSL and TL counterparts on five tasks by sharp margins.
arXiv Detail & Related papers (2021-02-25T14:56:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.