論文の概要: Doubly Robust Self-Training
- arxiv url: http://arxiv.org/abs/2306.00265v2
- Date: Mon, 19 Jun 2023 22:12:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 01:33:08.557022
- Title: Doubly Robust Self-Training
- Title(参考訳): ダブルロバストなセルフトレーニング
- Authors: Banghua Zhu, Mingyu Ding, Philip Jacobson, Ming Wu, Wei Zhan, Michael
Jordan, Jiantao Jiao
- Abstract要約: 本稿では,新しい半教師付きアルゴリズムである二重頑健な自己学習を導入する。
通常の自己学習ベースラインよりも2倍頑健な損失の優位性を実証する。
- 参考スコア(独自算出の注目度): 30.779274016753806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-training is an important technique for solving semi-supervised learning
problems. It leverages unlabeled data by generating pseudo-labels and combining
them with a limited labeled dataset for training. The effectiveness of
self-training heavily relies on the accuracy of these pseudo-labels. In this
paper, we introduce doubly robust self-training, a novel semi-supervised
algorithm that provably balances between two extremes. When the pseudo-labels
are entirely incorrect, our method reduces to a training process solely using
labeled data. Conversely, when the pseudo-labels are completely accurate, our
method transforms into a training process utilizing all pseudo-labeled data and
labeled data, thus increasing the effective sample size. Through empirical
evaluations on both the ImageNet dataset for image classification and the
nuScenes autonomous driving dataset for 3D object detection, we demonstrate the
superiority of the doubly robust loss over the standard self-training baseline.
- Abstract(参考訳): 自己学習は半教師付き学習問題を解決する重要な手法である。
擬似ラベルを生成して、限定ラベル付きデータセットと組み合わせてトレーニングすることで、ラベルのないデータを活用する。
自己学習の有効性は、これらの擬似ラベルの精度に大きく依存する。
本稿では,2つのエクストリーム間のバランスを確実に表す新しい半教師付きアルゴリズムである,二重頑健な自己学習を提案する。
擬似ラベルが完全に正しくない場合、ラベル付きデータのみを使用してトレーニングプロセスに還元する。
逆に、擬似ラベルが完全に正確である場合には、擬似ラベル付きデータとラベル付きデータを利用するトレーニングプロセスに変換し、有効サンプルサイズを増大させる。
画像分類のためのImageNetデータセットと3次元オブジェクト検出のためのnuScenes自律走行データセットの両方に関する実証的な評価を通じて、標準の自己学習ベースラインよりも2倍頑健な損失が優れていることを示す。
関連論文リスト
- TrajSSL: Trajectory-Enhanced Semi-Supervised 3D Object Detection [59.498894868956306]
Pseudo-labeling approach to semi-supervised learning は教師-学生の枠組みを採用する。
我々は、事前学習した動き予測モデルを活用し、擬似ラベル付きデータに基づいて物体軌跡を生成する。
提案手法は2つの異なる方法で擬似ラベル品質を向上する。
論文 参考訳(メタデータ) (2024-09-17T05:35:00Z) - Incremental Self-training for Semi-supervised Learning [56.57057576885672]
ISTは単純だが有効であり、既存の自己学習に基づく半教師あり学習手法に適合する。
提案したISTを5つのデータセットと2種類のバックボーンで検証し,認識精度と学習速度を効果的に向上させる。
論文 参考訳(メタデータ) (2024-04-14T05:02:00Z) - Boosting Semi-Supervised Learning by bridging high and low-confidence
predictions [4.18804572788063]
Pseudo-labelingは半教師あり学習(SSL)において重要な技術である
ReFixMatchと呼ばれる新しい手法を提案し、これはトレーニング中にラベルなしのデータをすべて活用することを目的としている。
論文 参考訳(メタデータ) (2023-08-15T00:27:18Z) - Soft Curriculum for Learning Conditional GANs with Noisy-Labeled and
Uncurated Unlabeled Data [70.25049762295193]
本稿では,トレーニング中にノイズラベル付きおよび未処理データを受け入れる条件付き画像生成フレームワークを提案する。
本稿では,ラベルのないデータに新たなラベルを割り当てながら,逆行訓練にインスタンスワイドを割り当てるソフトカリキュラム学習を提案する。
実験により,本手法は,定量および定性性能の両面において,既存の半教師付き・ラベル付きロバストな手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-07-17T08:31:59Z) - Pseudo-Label Noise Suppression Techniques for Semi-Supervised Semantic
Segmentation [21.163070161951868]
半消費学習(SSL)は、教師なしデータをトレーニングに組み込むことで、大きなラベル付きデータセットの必要性を減らすことができる。
現在のSSLアプローチでは、初期教師付きトレーニングモデルを使用して、擬似ラベルと呼ばれる未ラベル画像の予測を生成する。
擬似ラベルノイズと誤りを3つのメカニズムで制御する。
論文 参考訳(メタデータ) (2022-10-19T09:46:27Z) - Semi-supervised Learning using Robust Loss [0.0]
手動ラベル付きデータと追加ラベル付きデータの両方を活用するための半教師付きトレーニング戦略を提案する。
既存の手法とは対照的に、自動ラベル付きデータに対してロバストな損失を適用し、不均一なデータ品質を補う。
提案手法は,画像分類におけるラベルの不均一な品質を補正することにより,モデル性能の向上を図っている。
論文 参考訳(メタデータ) (2022-03-03T05:34:32Z) - Debiased Pseudo Labeling in Self-Training [77.83549261035277]
ディープニューラルネットワークは、大規模ラベル付きデータセットの助けを借りて、幅広いタスクで顕著なパフォーマンスを達成する。
ラベル付きデータの要求を軽減するため、ラベル付けされていないデータに擬似ラベルを付けることにより、学術と産業の両方で自己学習が広く使われている。
疑似ラベルの生成と利用を2つの独立した頭文字で分離するデバイアスドを提案する。
論文 参考訳(メタデータ) (2022-02-15T02:14:33Z) - Self-Tuning for Data-Efficient Deep Learning [75.34320911480008]
セルフチューニングは、データ効率のよいディープラーニングを可能にする新しいアプローチである。
ラベル付きおよびラベルなしデータの探索と事前訓練されたモデルの転送を統一する。
SSLとTLの5つのタスクをシャープなマージンで上回ります。
論文 参考訳(メタデータ) (2021-02-25T14:56:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。